Skip to main content
Top

2013 | OriginalPaper | Chapter

2. Laser Beam Machining

Authors : Shoujin Sun, Milan Brandt

Published in: Nontraditional Machining Processes

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cost of cutting hard-to-machine materials by conventional mechanical machining processes is high due to the low material removal rate and short tool life, and some materials are not possible to be cut by the conventional machining process at all. Laser beam machining is the machining processes involving a laser beam as a heat source. It is a thermal process used to remove materials without mechanical engagement with workpiece material where the workpiece is heated to melting or boiling point and removed by melt ejection, vaporization, or ablation mechanisms. In contrast with a conventional machine tool, the laser radiation does not experience wear, and material removal is not dependent on its hardness but on the optical properties of the laser and the optical and thermophysical properties of the material. This chapter summarizes the up-to-date progress of laser beam machining. It presents the basics and characteristics of industrial lasers and the state-of-the-art developments in laser beam machining.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17CrossRef Meijer J (2004) Laser beam machining (LBM), state of the art and new opportunities. J Mater Process Technol 149:2–17CrossRef
2.
go back to reference Tunna L, O’Neill W, Khan A, Sutcliffe C (2005) Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications. Opt Lasers Eng 43:937–950CrossRef Tunna L, O’Neill W, Khan A, Sutcliffe C (2005) Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications. Opt Lasers Eng 43:937–950CrossRef
3.
go back to reference Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34:231–253CrossRef Li L (2000) The advances and characteristics of high-power diode laser materials processing. Opt Lasers Eng 34:231–253CrossRef
4.
5.
go back to reference Olsen FO, Alting L (1995) Pulsed laser materials processing, ND-YAG versus CO2 lasers. CIRP Ann—Manuf Technol 44:141–145CrossRef Olsen FO, Alting L (1995) Pulsed laser materials processing, ND-YAG versus CO2 lasers. CIRP Ann—Manuf Technol 44:141–145CrossRef
6.
go back to reference Elijah Kannatey-Asibu J (2009) Principles of laser materials processing. Wiley, HobokenCrossRef Elijah Kannatey-Asibu J (2009) Principles of laser materials processing. Wiley, HobokenCrossRef
7.
go back to reference Yalukova O, Sárady I (2006) Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths. Compos Sci Technol 66:1289–1296CrossRef Yalukova O, Sárady I (2006) Investigation of interaction mechanisms in laser drilling of thermoplastic and thermoset polymers using different wavelengths. Compos Sci Technol 66:1289–1296CrossRef
8.
go back to reference Bergström D, Powell J, Kaplan AFH (2007) A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces. J Appl Phys 101:13504CrossRef Bergström D, Powell J, Kaplan AFH (2007) A ray-tracing analysis of the absorption of light by smooth and rough metal surfaces. J Appl Phys 101:13504CrossRef
9.
go back to reference Petring D, Abels P, Beyer E (1988) Absorption distribution on idealized cutting front geometries and its significance for laser beam cutting. Proc SPIE 1020:123–131CrossRef Petring D, Abels P, Beyer E (1988) Absorption distribution on idealized cutting front geometries and its significance for laser beam cutting. Proc SPIE 1020:123–131CrossRef
10.
go back to reference Kwon H, Yoh JJ (2012) Polarized reflectance of aluminum and nickel to 532, 355 and 266 nm Nd:YAG laser beams for varying surface finish. Opt Laser Technol 44:1823–1828CrossRef Kwon H, Yoh JJ (2012) Polarized reflectance of aluminum and nickel to 532, 355 and 266 nm Nd:YAG laser beams for varying surface finish. Opt Laser Technol 44:1823–1828CrossRef
11.
go back to reference Mv Allmen (1976) Laser drilling velocity in metals. J Appl Phys 47:5460–5463CrossRef Mv Allmen (1976) Laser drilling velocity in metals. J Appl Phys 47:5460–5463CrossRef
12.
go back to reference Chan CL, Mazumder J (1987) One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. J Appl Phys 62:4579–4586CrossRef Chan CL, Mazumder J (1987) One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. J Appl Phys 62:4579–4586CrossRef
13.
go back to reference Chang JJ, Warner BE (1996) Laser-plasma interaction during visible-laser ablation of metals. Appl Phys Lett 69:473–475CrossRef Chang JJ, Warner BE (1996) Laser-plasma interaction during visible-laser ablation of metals. Appl Phys Lett 69:473–475CrossRef
14.
go back to reference Tam SC, Williams R, Yang LJ, Jana S, Lim LEN, Lau MWS (1990) A review of the laser processing of aircraft components. J Mater Process Technol 23:177–194CrossRef Tam SC, Williams R, Yang LJ, Jana S, Lim LEN, Lau MWS (1990) A review of the laser processing of aircraft components. J Mater Process Technol 23:177–194CrossRef
15.
go back to reference Segall AE, Cai G, Akarapu R, Romasco A, Li BQ (2005) Fracture control of unsupported ceramics during laser machining using a simultaneous prescore. J Laser Appl 17:57–62 Segall AE, Cai G, Akarapu R, Romasco A, Li BQ (2005) Fracture control of unsupported ceramics during laser machining using a simultaneous prescore. J Laser Appl 17:57–62
16.
go back to reference Tsai C-H, Chen H-W (2003) Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 136:166–173CrossRef Tsai C-H, Chen H-W (2003) Laser cutting of thick ceramic substrates by controlled fracture technique. J Mater Process Technol 136:166–173CrossRef
17.
go back to reference Kalyanasundaram D, Shrotriya P, Molian P (2010) Fracture mechanics—based analysis for hybrid laser/water jet (LWJ) machining of yttria-partially stabilized zirconia (Y-PSZ). Int J Mach Tool Manuf 50:97–105CrossRef Kalyanasundaram D, Shrotriya P, Molian P (2010) Fracture mechanics—based analysis for hybrid laser/water jet (LWJ) machining of yttria-partially stabilized zirconia (Y-PSZ). Int J Mach Tool Manuf 50:97–105CrossRef
18.
go back to reference Barnes C, Shrotriya P, Molian P (2007) Water-assisted laser thermal shock machining of alumina. Int J Mach Tool Manuf 47:1864–1874CrossRef Barnes C, Shrotriya P, Molian P (2007) Water-assisted laser thermal shock machining of alumina. Int J Mach Tool Manuf 47:1864–1874CrossRef
19.
go back to reference Tsai CH, Liou CS (2003) Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng, Trans ASME 125:519–528CrossRef Tsai CH, Liou CS (2003) Fracture mechanism of laser cutting with controlled fracture. J Manuf Sci Eng, Trans ASME 125:519–528CrossRef
20.
go back to reference Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—An overview. J Mater Process Technol 195:15–26CrossRef Dubey AK, Yadava V (2008) Experimental study of Nd:YAG laser beam machining—An overview. J Mater Process Technol 195:15–26CrossRef
21.
go back to reference Mahrle A, Lütke M, Beyer E (2010) Fibre laser cutting: beam absorption characteristics and gas-free remote cutting. Proc Inst Mech Eng C: J Mech Eng Sci 224:1007–1018CrossRef Mahrle A, Lütke M, Beyer E (2010) Fibre laser cutting: beam absorption characteristics and gas-free remote cutting. Proc Inst Mech Eng C: J Mech Eng Sci 224:1007–1018CrossRef
22.
go back to reference Quintero F, Varas F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2005) Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics. J Phys D Appl Phys 38:655–666CrossRef Quintero F, Varas F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2005) Theoretical analysis of material removal mechanisms in pulsed laser fusion cutting of ceramics. J Phys D Appl Phys 38:655–666CrossRef
23.
go back to reference Olsen FO, Alting L (1989) Cutting front formation in laser cutting. CIRP Ann—Manuf Technol 38:215–218CrossRef Olsen FO, Alting L (1989) Cutting front formation in laser cutting. CIRP Ann—Manuf Technol 38:215–218CrossRef
24.
go back to reference Ivarson A, Powell J, Kamalu J, Magnusson C (1994) The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J Mater Process Technol 40:359–374CrossRef Ivarson A, Powell J, Kamalu J, Magnusson C (1994) The oxidation dynamics of laser cutting of mild steel and the generation of striations on the cut edge. J Mater Process Technol 40:359–374CrossRef
25.
go back to reference Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Dynamic behaviour in laser cutting of mild steel. Trans Jpn Weld Res Inst 8:15–26 Arata Y, Maruo H, Miyamoto I, Takeuchi S (1979) Dynamic behaviour in laser cutting of mild steel. Trans Jpn Weld Res Inst 8:15–26
26.
go back to reference Chen K, Yao YL, Modi V (1999) Numerical simulation of oxidation effects in the laser cutting process. Int J Adv Manuf Technol 15:835–842CrossRef Chen K, Yao YL, Modi V (1999) Numerical simulation of oxidation effects in the laser cutting process. Int J Adv Manuf Technol 15:835–842CrossRef
27.
go back to reference Kaplan AFH, Wangler O, Schuöcker D (1997) Laser cutting: fundamentals of the periodic striations and their on-line detection. Lasers Eng 6:103–126 Kaplan AFH, Wangler O, Schuöcker D (1997) Laser cutting: fundamentals of the periodic striations and their on-line detection. Lasers Eng 6:103–126
28.
go back to reference Sobih M, Crouse PL, Li L (2007) Elimination of striation in laser cutting of mild steel. J Phys D Appl Phys 40:6908–6916CrossRef Sobih M, Crouse PL, Li L (2007) Elimination of striation in laser cutting of mild steel. J Phys D Appl Phys 40:6908–6916CrossRef
29.
go back to reference Kaplan AFH (1996) An analytical model of metal cutting with a laser beam. J Appl Phys 79:2198–2208CrossRef Kaplan AFH (1996) An analytical model of metal cutting with a laser beam. J Appl Phys 79:2198–2208CrossRef
30.
go back to reference Fomin VM, A.G. Malikov, Orishich AM, Shulyat’ev VB (2011) Energy conditions of gas laser cutting of thick steel sheets. J Appl Mech Tech Phys 52:340–346 Fomin VM, A.G. Malikov, Orishich AM, Shulyat’ev VB (2011) Energy conditions of gas laser cutting of thick steel sheets. J Appl Mech Tech Phys 52:340–346
31.
go back to reference Mahrle A, Beyer E (2009) Theoretical aspects of fibre laser cutting. J Phys D Appl Phys 42:175507CrossRef Mahrle A, Beyer E (2009) Theoretical aspects of fibre laser cutting. J Phys D Appl Phys 42:175507CrossRef
32.
go back to reference Prusa JM, Venkitachalam G, Molian PA (1999) Estimation of heat conduction losses in laser cutting. Int J Mach Tool Manuf 39:431–458CrossRef Prusa JM, Venkitachalam G, Molian PA (1999) Estimation of heat conduction losses in laser cutting. Int J Mach Tool Manuf 39:431–458CrossRef
33.
go back to reference Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: I. Mathematical modelling of the cut kerf geometry for laser fusion cutting of thick metal. J Phys D Appl Phys 34:2127–2134CrossRef Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: I. Mathematical modelling of the cut kerf geometry for laser fusion cutting of thick metal. J Phys D Appl Phys 34:2127–2134CrossRef
34.
go back to reference Schuöcker D (1986) Theoretical model of reactive gas-assisted laser cutting including dynamic effects. Proc SPIE 650:210–219CrossRef Schuöcker D (1986) Theoretical model of reactive gas-assisted laser cutting including dynamic effects. Proc SPIE 650:210–219CrossRef
35.
go back to reference Ivarson A (1993) On the physics and chemical thermodynamics of laser cutting. PhD thesis, Lulea University of Technology, Sweden Ivarson A (1993) On the physics and chemical thermodynamics of laser cutting. PhD thesis, Lulea University of Technology, Sweden
37.
go back to reference Ivarson A, Powell J, Magnusson C (1991) The role of oxidation in laser cutting stainless and mild steel. J Laser Appl 3:41–45CrossRef Ivarson A, Powell J, Magnusson C (1991) The role of oxidation in laser cutting stainless and mild steel. J Laser Appl 3:41–45CrossRef
38.
go back to reference Hsu MJ, Molian PA (1994) Thermochemical modelling in CO2 laser cutting of carbon steel. J Mater Sci 29:5607–5611CrossRef Hsu MJ, Molian PA (1994) Thermochemical modelling in CO2 laser cutting of carbon steel. J Mater Sci 29:5607–5611CrossRef
39.
go back to reference Powell J, Petring D, Kumar RV, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2009) Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction. J Phys D Appl Phys 42:015504CrossRef Powell J, Petring D, Kumar RV, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2009) Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction. J Phys D Appl Phys 42:015504CrossRef
40.
go back to reference Geiger M, Bergmann HW, Nuss R (1988) Laser cutting of steel sheets. Proc SPIE 1022:20–33CrossRef Geiger M, Bergmann HW, Nuss R (1988) Laser cutting of steel sheets. Proc SPIE 1022:20–33CrossRef
41.
go back to reference Chen S-L (1998) The effects of gas composition on the CO2 laser cutting of mild steel. J Mater Process Technol 73:147–159CrossRef Chen S-L (1998) The effects of gas composition on the CO2 laser cutting of mild steel. J Mater Process Technol 73:147–159CrossRef
42.
go back to reference Powell J, Ivarson A, Magnusson C (1993) Laser cutting of steels: a physical and chemical analysis of the particles ejected during cutting. J Laser Appl 5:25–31CrossRef Powell J, Ivarson A, Magnusson C (1993) Laser cutting of steels: a physical and chemical analysis of the particles ejected during cutting. J Laser Appl 5:25–31CrossRef
43.
go back to reference Poprawe R, König W (2001) Modeling, monitoring and control in high quality laser cutting. CIRP Ann—Manuf Technol 50:137–140CrossRef Poprawe R, König W (2001) Modeling, monitoring and control in high quality laser cutting. CIRP Ann—Manuf Technol 50:137–140CrossRef
44.
go back to reference Yudin P, Kovalev O (2009) Visualization of events inside kerfs during laser cutting of fusible metal. J Laser Appl 21:39–45CrossRef Yudin P, Kovalev O (2009) Visualization of events inside kerfs during laser cutting of fusible metal. J Laser Appl 21:39–45CrossRef
45.
go back to reference Hirano K, Fabbro R (2011) Experimental investigation of hydrodynamics of melt layer during laser cutting of steel. J Phys D Appl Phys 44:105502CrossRef Hirano K, Fabbro R (2011) Experimental investigation of hydrodynamics of melt layer during laser cutting of steel. J Phys D Appl Phys 44:105502CrossRef
46.
go back to reference Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2011) Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J Phys D Appl Phys 44:135501CrossRef Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2011) Study of melt flow dynamics and influence on quality for CO2 laser fusion cutting. J Phys D Appl Phys 44:135501CrossRef
47.
go back to reference Chen S-L (1997) In-process monitoring of the cutting front of CO2 laser cutting with off-axis optical fibre. Int J Adv Manuf Technol 13:685–691CrossRef Chen S-L (1997) In-process monitoring of the cutting front of CO2 laser cutting with off-axis optical fibre. Int J Adv Manuf Technol 13:685–691CrossRef
48.
go back to reference Schuöcker D, Abel W (1984) Material removal mechanism of laser cutting. Proc SPIE 455:88–95CrossRef Schuöcker D, Abel W (1984) Material removal mechanism of laser cutting. Proc SPIE 455:88–95CrossRef
49.
go back to reference Schuöcker D (1986) Dynamic phenomena in laser cutting and cut quality. Appl Phys B 40:9–14CrossRef Schuöcker D (1986) Dynamic phenomena in laser cutting and cut quality. Appl Phys B 40:9–14CrossRef
50.
go back to reference Vicanek M, Simon G (1987) Momentum and heat transfer of an inert gas jet to the melt in laser cutting. J Phys D Appl Phys 20:1191–1196CrossRef Vicanek M, Simon G (1987) Momentum and heat transfer of an inert gas jet to the melt in laser cutting. J Phys D Appl Phys 20:1191–1196CrossRef
51.
go back to reference Schulz W, Simon G, Urbassek HM, Decker I (1987) On laser fusion cutting of metals. J Phys D Appl Phys 20:481–488CrossRef Schulz W, Simon G, Urbassek HM, Decker I (1987) On laser fusion cutting of metals. J Phys D Appl Phys 20:481–488CrossRef
52.
go back to reference Schulz W, Kostrykin V, Nießen M, Michel J, Petring D, Kreutz EW, Poprawe R (1999) Dynamics of ripple formation and melt flow in laser beam cutting. J Phys D Appl Phys 32:1219–1228CrossRef Schulz W, Kostrykin V, Nießen M, Michel J, Petring D, Kreutz EW, Poprawe R (1999) Dynamics of ripple formation and melt flow in laser beam cutting. J Phys D Appl Phys 32:1219–1228CrossRef
53.
go back to reference Vicanek M, Simon G, Urbassek HM, Decker I (1987) Hydrodynamical instability of melt flow in laser cutting. J Phys D Appl Phys 20:140–145CrossRef Vicanek M, Simon G, Urbassek HM, Decker I (1987) Hydrodynamical instability of melt flow in laser cutting. J Phys D Appl Phys 20:140–145CrossRef
54.
go back to reference Wandera C, Kujanpaa V (2010) Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J Laser Appl 22:62–70CrossRef Wandera C, Kujanpaa V (2010) Characterization of the melt removal rate in laser cutting of thick-section stainless steel. J Laser Appl 22:62–70CrossRef
55.
go back to reference Hirano K, Fabbro R (2011) Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel. Phys Procedia 12(Part A):555–564 Hirano K, Fabbro R (2011) Experimental observation of hydrodynamics of melt layer and striation generation during laser cutting of steel. Phys Procedia 12(Part A):555–564
56.
go back to reference Powell J, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2011) Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt Lasers Eng 49:1069–1075CrossRef Powell J, Al-Mashikhi SO, Kaplan AFH, Voisey KT (2011) Fibre laser cutting of thin section mild steel: an explanation of the ‘striation free’ effect. Opt Lasers Eng 49:1069–1075CrossRef
57.
go back to reference Schober A, Musiol J, Daub R, Feil J, Zaeh MF (2012) Experimental investigation of the cutting front angle during remote fusion cutting. Phys Procedia 39:204–212CrossRef Schober A, Musiol J, Daub R, Feil J, Zaeh MF (2012) Experimental investigation of the cutting front angle during remote fusion cutting. Phys Procedia 39:204–212CrossRef
58.
go back to reference Di Pietro P, Yao YL (1995) A numerical investigation into cutting front mobility in CO2 laser cutting. Int J Mach Tool Manuf 35:673–688CrossRef Di Pietro P, Yao YL (1995) A numerical investigation into cutting front mobility in CO2 laser cutting. Int J Mach Tool Manuf 35:673–688CrossRef
59.
go back to reference Ermolaev GV, Kovalev OB, Orishich AM, Fomin VM (2006) Mathematical modelling of striation formation in oxygen laser cutting of mild steel. J Phys D Appl Phys 39:4236–4244CrossRef Ermolaev GV, Kovalev OB, Orishich AM, Fomin VM (2006) Mathematical modelling of striation formation in oxygen laser cutting of mild steel. J Phys D Appl Phys 39:4236–4244CrossRef
60.
go back to reference Li L, Sobih M, Crouse PL (2007) Striation-free laser cutting of mild steel sheets. CIRP Ann—Manuf Technol 56:193–196CrossRef Li L, Sobih M, Crouse PL (2007) Striation-free laser cutting of mild steel sheets. CIRP Ann—Manuf Technol 56:193–196CrossRef
61.
go back to reference Schuöcker D (1988) Heat conduction and mass transfer in laser cutting. Proc SPIE 952:592–599 Schuöcker D (1988) Heat conduction and mass transfer in laser cutting. Proc SPIE 952:592–599
62.
go back to reference Tsai MJ, Weng CI (1993) Linear stability analysis of molten flow in laser cutting. J Phys D Appl Phys 26:719–727CrossRef Tsai MJ, Weng CI (1993) Linear stability analysis of molten flow in laser cutting. J Phys D Appl Phys 26:719–727CrossRef
63.
go back to reference Schulz W, Simon G, Vicanek M, Decker I (1987) Influence of the oxidation process in laser gas cutting. Proc SPIE 801:331–336CrossRef Schulz W, Simon G, Vicanek M, Decker I (1987) Influence of the oxidation process in laser gas cutting. Proc SPIE 801:331–336CrossRef
64.
go back to reference Powell J, Ivarson A, Ohlsson L, Magnusson C (2000) Conductive losses experienced during CO2 laser cutting. High Temper Mater Process 4:201–211 Powell J, Ivarson A, Ohlsson L, Magnusson C (2000) Conductive losses experienced during CO2 laser cutting. High Temper Mater Process 4:201–211
65.
go back to reference Onuseit V, Ahmed MA, Weber R, Graf T (2011) Space-resolved spectrometric measurements of the cutting front. Phys Procedia 12(Part A):584–590 Onuseit V, Ahmed MA, Weber R, Graf T (2011) Space-resolved spectrometric measurements of the cutting front. Phys Procedia 12(Part A):584–590
66.
go back to reference Olsen FO (1994) Fundamental mechanisms of cutting front formation in laser cutting. Proc SPIE 2207:402–413CrossRef Olsen FO (1994) Fundamental mechanisms of cutting front formation in laser cutting. Proc SPIE 2207:402–413CrossRef
67.
go back to reference Chen K, Lawrence Yao Y (1999) Striation formation and melt removal in the laser cutting process. J Manuf Process 1:43–53CrossRef Chen K, Lawrence Yao Y (1999) Striation formation and melt removal in the laser cutting process. J Manuf Process 1:43–53CrossRef
68.
go back to reference Heidenreich B, Jüptner W, Sepold G (1996) Fundamental investigations of the burn-out phenomenon of laser cut edges. Lasers Eng 5:1–10 Heidenreich B, Jüptner W, Sepold G (1996) Fundamental investigations of the burn-out phenomenon of laser cut edges. Lasers Eng 5:1–10
69.
go back to reference Wee LM, Li L (2005) An analytical model for striation formation in laser cutting. Appl Surf Sci 247:277–284CrossRef Wee LM, Li L (2005) An analytical model for striation formation in laser cutting. Appl Surf Sci 247:277–284CrossRef
70.
go back to reference Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: III. Effects of various process parameters on cut kerf quality. J Phys D Appl Phys 34:2143–2150CrossRef Duan J, Man HC, Yue TM (2001) Modelling the laser fusion cutting process: III. Effects of various process parameters on cut kerf quality. J Phys D Appl Phys 34:2143–2150CrossRef
71.
go back to reference Chen K, Lawrence Yao Y, Modi V (2001) Gas dynamic effects on laser cut quality. J Manuf Process 3:38–49CrossRef Chen K, Lawrence Yao Y, Modi V (2001) Gas dynamic effects on laser cut quality. J Manuf Process 3:38–49CrossRef
72.
go back to reference Ermolaev GV, Kovalev OB (2009) Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles. J Phys D Appl Phys 42:185506CrossRef Ermolaev GV, Kovalev OB (2009) Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles. J Phys D Appl Phys 42:185506CrossRef
73.
go back to reference Kovalev OB, Yudin PV, Zaitsev AV (2008) Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas. J Phys D Appl Phys 41:155112CrossRef Kovalev OB, Yudin PV, Zaitsev AV (2008) Formation of a vortex flow at the laser cutting of sheet metal with low pressure of assisting gas. J Phys D Appl Phys 41:155112CrossRef
74.
go back to reference Farooq K, Kar A (1998) Removal of laser-melted material with an assist gas. J Appl Phys 83:7467–7473CrossRef Farooq K, Kar A (1998) Removal of laser-melted material with an assist gas. J Appl Phys 83:7467–7473CrossRef
75.
go back to reference Kovalev OB, Yudin PV, Zaitsev AV (2009) Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl Math Model 33:3730–3745MathSciNetMATHCrossRef Kovalev OB, Yudin PV, Zaitsev AV (2009) Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl Math Model 33:3730–3745MathSciNetMATHCrossRef
76.
go back to reference Karatas C, Keles O, Uslan I, Usta Y (2006) Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and stria formation. J Mater Process Technol 172:22–29CrossRef Karatas C, Keles O, Uslan I, Usta Y (2006) Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and stria formation. J Mater Process Technol 172:22–29CrossRef
77.
go back to reference Kaebernick H, Bicleanu D, Brandt M (1999) Theoretical and experimental investigation of pulsed laser cutting. CIRP Ann—Manuf Technol 48:163–166CrossRef Kaebernick H, Bicleanu D, Brandt M (1999) Theoretical and experimental investigation of pulsed laser cutting. CIRP Ann—Manuf Technol 48:163–166CrossRef
78.
go back to reference Decker I, Ruge J, Atzert U (1984) Physical models and technological aspects of laser gas cutting. Proc SPIE 455:81–87CrossRef Decker I, Ruge J, Atzert U (1984) Physical models and technological aspects of laser gas cutting. Proc SPIE 455:81–87CrossRef
79.
go back to reference Sobih M, Crouse PL, Li L (2008) Striation-free fibre laser cutting of mild steel sheets. Appl Phys A 90:171–174CrossRef Sobih M, Crouse PL, Li L (2008) Striation-free fibre laser cutting of mild steel sheets. Appl Phys A 90:171–174CrossRef
80.
go back to reference Ledenev VI, Karasev VA, Yakunin VP (1999) On cyclical mechanism of kerf formation under gas assisted laser cutting of metals. Proc SPIE 3688:157–162CrossRef Ledenev VI, Karasev VA, Yakunin VP (1999) On cyclical mechanism of kerf formation under gas assisted laser cutting of metals. Proc SPIE 3688:157–162CrossRef
81.
go back to reference Di Pietro P, Yao YL (1995) A new technique to characterize and predict laser cut striations. Int J Mach Tool Manuf 35:993–1002CrossRef Di Pietro P, Yao YL (1995) A new technique to characterize and predict laser cut striations. Int J Mach Tool Manuf 35:993–1002CrossRef
82.
go back to reference Schuöcker D, Aichinger J, Majer R (2012) Dynamic phenomena in laser cutting and process performance. Phys Procedia 39:179–185CrossRef Schuöcker D, Aichinger J, Majer R (2012) Dynamic phenomena in laser cutting and process performance. Phys Procedia 39:179–185CrossRef
83.
go back to reference Makashev NK, Asmolov ES, Blinkov VV, Boris AY, Burmistrov AV, Buzykin V, Makarov VA (1994) Gas-hydro-dynamics of CW laser cutting of metals in inert gas. Proc SPIE 2257:2–9CrossRef Makashev NK, Asmolov ES, Blinkov VV, Boris AY, Burmistrov AV, Buzykin V, Makarov VA (1994) Gas-hydro-dynamics of CW laser cutting of metals in inert gas. Proc SPIE 2257:2–9CrossRef
84.
go back to reference King TG, Powell J (1986) Laser-cut mild steel—factors affecting edge quality. Wear 109:135–144CrossRef King TG, Powell J (1986) Laser-cut mild steel—factors affecting edge quality. Wear 109:135–144CrossRef
85.
go back to reference Kaebernick H, Jeromin A, Mathew P (1998) Adaptive control for laser cutting using striation frequency analysis. CIRP Ann—Manuf Technol 47:137–140CrossRef Kaebernick H, Jeromin A, Mathew P (1998) Adaptive control for laser cutting using striation frequency analysis. CIRP Ann—Manuf Technol 47:137–140CrossRef
86.
go back to reference Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2012) Nano-second pulsed DPSS Nd: YAG laser striation-free cutting of alumina sheets. Int J Mach Tool Manuf 53:15–26CrossRef Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2012) Nano-second pulsed DPSS Nd: YAG laser striation-free cutting of alumina sheets. Int J Mach Tool Manuf 53:15–26CrossRef
87.
go back to reference Dahotre NB, Harimkar SP (2008) Laser Fabrication and Machining of Materials. Springer, New York Dahotre NB, Harimkar SP (2008) Laser Fabrication and Machining of Materials. Springer, New York
88.
go back to reference Arata Y, Maruo H, Miyamoto I, Takeuchi S (1981) Quality in laser-gas-cutting stainless steel and its improvement. Trans Jpn Weld Res Inst 10:129–139 Arata Y, Maruo H, Miyamoto I, Takeuchi S (1981) Quality in laser-gas-cutting stainless steel and its improvement. Trans Jpn Weld Res Inst 10:129–139
89.
go back to reference Nielsen SE (1997) Developments in laser beam cutting of thick materials. Industrial Laser Review 12: 11–13 Nielsen SE (1997) Developments in laser beam cutting of thick materials. Industrial Laser Review 12: 11–13
90.
go back to reference Chen S-L (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J Mater Process Technol 88:57–66CrossRef Chen S-L (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J Mater Process Technol 88:57–66CrossRef
91.
go back to reference O’Neill W, Steen WW (1995) A three-dimensional analysis of gas entrainment operating during the laser-cutting process. J Phys D Appl Phys 28:12–18CrossRef O’Neill W, Steen WW (1995) A three-dimensional analysis of gas entrainment operating during the laser-cutting process. J Phys D Appl Phys 28:12–18CrossRef
92.
go back to reference Sheng PS, Joshi VS (1995) Analysis of heat-affected zone formation for laser cutting of stainless steel. J Mater Process Technol 53:879–892CrossRef Sheng PS, Joshi VS (1995) Analysis of heat-affected zone formation for laser cutting of stainless steel. J Mater Process Technol 53:879–892CrossRef
93.
go back to reference Shanjin L, Yang W (2006) An investigation of pulsed laser cutting of titanium alloy sheet. Opt Lasers Eng 44:1067–1077CrossRef Shanjin L, Yang W (2006) An investigation of pulsed laser cutting of titanium alloy sheet. Opt Lasers Eng 44:1067–1077CrossRef
94.
go back to reference Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Influence of assist gas nature on the surfaces obtained by laser cutting of Al–Cu alloys. Surf Coat Technol 205:1878–1885CrossRef Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Influence of assist gas nature on the surfaces obtained by laser cutting of Al–Cu alloys. Surf Coat Technol 205:1878–1885CrossRef
95.
go back to reference Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Parametric investigation of CO2 laser cutting of 2024–T3 alloy. J Mater Process Technol 210:1138–1152CrossRef Riveiro A, Quintero F, Lusquiños F, Comesaña R, Pou J (2010) Parametric investigation of CO2 laser cutting of 2024–T3 alloy. J Mater Process Technol 210:1138–1152CrossRef
96.
go back to reference Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2004) Quantitative evaluation of the quality of the cuts performed on mullite-alumina by Nd:YAG laser. Opt Lasers Eng 42:327–340CrossRef Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2004) Quantitative evaluation of the quality of the cuts performed on mullite-alumina by Nd:YAG laser. Opt Lasers Eng 42:327–340CrossRef
97.
go back to reference Rao BT, Kaul R, Tiwari P, Nath AK (2005) Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt Lasers Eng 43:1330–1348CrossRef Rao BT, Kaul R, Tiwari P, Nath AK (2005) Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt Lasers Eng 43:1330–1348CrossRef
98.
go back to reference Scintilla LD, Tricarico L, Wetzig A, Mahrle A, Beyer E (2011) Primary losses in disk and CO2 laser beam inert gas fusion cutting. J Mater Process Technol 211:2050–2061CrossRef Scintilla LD, Tricarico L, Wetzig A, Mahrle A, Beyer E (2011) Primary losses in disk and CO2 laser beam inert gas fusion cutting. J Mater Process Technol 211:2050–2061CrossRef
99.
go back to reference Powell J, Ivarson A, Kamalu J, Broden G, Magnusson C (1993) Role of oxygen purity in laser cutting of mild steel. Proc SPIE 1990:433–442 Powell J, Ivarson A, Kamalu J, Broden G, Magnusson C (1993) Role of oxygen purity in laser cutting of mild steel. Proc SPIE 1990:433–442
100.
go back to reference Belic I, Stanic J (1987) A method to determine the parameters of laser iron and steel cutting. Opt Laser Technol 19:309–311CrossRef Belic I, Stanic J (1987) A method to determine the parameters of laser iron and steel cutting. Opt Laser Technol 19:309–311CrossRef
101.
go back to reference Belić I (1989) A method to determine the parameters of laser cutting. Opt Laser Technol 21:277–278CrossRef Belić I (1989) A method to determine the parameters of laser cutting. Opt Laser Technol 21:277–278CrossRef
102.
go back to reference Chryssolouris G (1991) Laser Machining, Therory and Practice. Springer, New YorkCrossRef Chryssolouris G (1991) Laser Machining, Therory and Practice. Springer, New YorkCrossRef
103.
go back to reference Lepore M, Dell’Erba M, Esposito C, Daurelio G, Cingolani A (1983) An investigation of the laser cutting process with the aid of a plane polarized CO2 laser beam. Opt Lasers Eng 4:241–251CrossRef Lepore M, Dell’Erba M, Esposito C, Daurelio G, Cingolani A (1983) An investigation of the laser cutting process with the aid of a plane polarized CO2 laser beam. Opt Lasers Eng 4:241–251CrossRef
104.
go back to reference Muys P, Youn M (2008) Mathematical Modeling of Laser Sublimation Cutting. Laser Phys 18:495–499CrossRef Muys P, Youn M (2008) Mathematical Modeling of Laser Sublimation Cutting. Laser Phys 18:495–499CrossRef
105.
go back to reference Niziev V, Nesterov A (1999) Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461CrossRef Niziev V, Nesterov A (1999) Influence of beam polarization on laser cutting efficiency. J Phys D Appl Phys 32:1455–1461CrossRef
106.
go back to reference Scintilla LD, Tricarico L, Mahrle A, Wetzig A, Beyer E (2012) A comparative study of cut front profiles and absorptivity behavior for disk and CO2 laser beam inert gas fusion cutting. J Laser Appl 24:052006CrossRef Scintilla LD, Tricarico L, Mahrle A, Wetzig A, Beyer E (2012) A comparative study of cut front profiles and absorptivity behavior for disk and CO2 laser beam inert gas fusion cutting. J Laser Appl 24:052006CrossRef
107.
go back to reference Poprawe R, Schulz W, Schmitt R (2010) Hydrodynamics of material removal by melt expulsion: perspectives of laser cutting and drilling. Phys Procedia 5(Part A):1–18 Poprawe R, Schulz W, Schmitt R (2010) Hydrodynamics of material removal by melt expulsion: perspectives of laser cutting and drilling. Phys Procedia 5(Part A):1–18
108.
go back to reference Olsen FO, Hansen KS, Nielsen JS (2009) Multibeam fiber laser cutting. J Laser Appl 21:133–138CrossRef Olsen FO, Hansen KS, Nielsen JS (2009) Multibeam fiber laser cutting. J Laser Appl 21:133–138CrossRef
109.
go back to reference Petring D, Molitor T, Schneider F, Wolf N (2012) Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers. Phys Procedia 39:186–196CrossRef Petring D, Molitor T, Schneider F, Wolf N (2012) Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers. Phys Procedia 39:186–196CrossRef
110.
go back to reference Wandera C, Kujanpää V, Salminen A (2011) Laser power requirement for cutting thick-section steel and effects of processing parameters on mild steel cut quality. Proc Inst Mech Eng B J Eng Manuf 225:651–661CrossRef Wandera C, Kujanpää V, Salminen A (2011) Laser power requirement for cutting thick-section steel and effects of processing parameters on mild steel cut quality. Proc Inst Mech Eng B J Eng Manuf 225:651–661CrossRef
111.
go back to reference Sparkes M, Gross M, Celotto S, Zhang T, O’Neill W (2008) Practical and theoretical investigations into inert gas cutting of 304 stainless steel using a high brightness fiber laser. J Laser Appl 20:59–67CrossRef Sparkes M, Gross M, Celotto S, Zhang T, O’Neill W (2008) Practical and theoretical investigations into inert gas cutting of 304 stainless steel using a high brightness fiber laser. J Laser Appl 20:59–67CrossRef
112.
go back to reference Grevey DF, Desplats H (1994) Comparison of the performance obtained with a YAG laser cutting according to the source operation mode. J Mater Process Technol 42:341–348CrossRef Grevey DF, Desplats H (1994) Comparison of the performance obtained with a YAG laser cutting according to the source operation mode. J Mater Process Technol 42:341–348CrossRef
113.
go back to reference Ivarson A, Powell J, Magnusson C (1996) The role of oxygen pressure in laser cutting mild steels. J Laser Appl 8:191–196CrossRef Ivarson A, Powell J, Magnusson C (1996) The role of oxygen pressure in laser cutting mild steels. J Laser Appl 8:191–196CrossRef
114.
go back to reference Thawari G, Sundar JKS, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239CrossRef Thawari G, Sundar JKS, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239CrossRef
115.
go back to reference Bicleanu D, Brandt M, Kaebernick H (1996) An analytical model for pulsed laser cutting of metals. In: Proceedings 15th international congress on applications of lasers and electro-optics, 68–77 Bicleanu D, Brandt M, Kaebernick H (1996) An analytical model for pulsed laser cutting of metals. In: Proceedings 15th international congress on applications of lasers and electro-optics, 68–77
116.
go back to reference Lee CS, Gael A, Osada H (1985) Parametric studies of pulsed-laser cutting of thin metal plates. J Appl Phys 58:1339–1343CrossRef Lee CS, Gael A, Osada H (1985) Parametric studies of pulsed-laser cutting of thin metal plates. J Appl Phys 58:1339–1343CrossRef
117.
go back to reference Pfeifer R, Herzog D, Hustedt M, Barcikowski S (2010) Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—Influence of process parameters. J Mater Process Technol 210:1918–1925CrossRef Pfeifer R, Herzog D, Hustedt M, Barcikowski S (2010) Pulsed Nd:YAG laser cutting of NiTi shape memory alloys—Influence of process parameters. J Mater Process Technol 210:1918–1925CrossRef
118.
go back to reference Powell J, Tan WK, Maclennan P, Rudd D, Wykes C, Engstrom H (2000) Laser cutting stainless steel with dual focus lenses. J Laser Appl 12:224–231CrossRef Powell J, Tan WK, Maclennan P, Rudd D, Wykes C, Engstrom H (2000) Laser cutting stainless steel with dual focus lenses. J Laser Appl 12:224–231CrossRef
119.
go back to reference Rocca AVL, Borsati L, Cantello M (1994) Nozzle design to control fluid-dynamics effects in laser cutting. Proc SPIE 2207:354–368CrossRef Rocca AVL, Borsati L, Cantello M (1994) Nozzle design to control fluid-dynamics effects in laser cutting. Proc SPIE 2207:354–368CrossRef
120.
go back to reference Powell J, Frass K, Menzies IA (1987) 2.5 kW Laser cutting of steels; Factors affecting cut quality in sections up to 20 mm. Proc SPIE 801:278–282CrossRef Powell J, Frass K, Menzies IA (1987) 2.5 kW Laser cutting of steels; Factors affecting cut quality in sections up to 20 mm. Proc SPIE 801:278–282CrossRef
121.
go back to reference Man HC, Duan J, Yue TM (1997) Design and characteristic analysis of supersonic nozzles for high gas pressure laser cutting. J Mater Process Technol 63:217–222CrossRef Man HC, Duan J, Yue TM (1997) Design and characteristic analysis of supersonic nozzles for high gas pressure laser cutting. J Mater Process Technol 63:217–222CrossRef
122.
go back to reference Leidinger D, Penz A, Schuöcker D (1995) Improved manufacturing processes with high power lasers. Infrared Phys Technol 36:251–266CrossRef Leidinger D, Penz A, Schuöcker D (1995) Improved manufacturing processes with high power lasers. Infrared Phys Technol 36:251–266CrossRef
123.
go back to reference Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2003) Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics. Rev Sci Instrum 74:4199–4205CrossRef Quintero F, Pou J, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2003) Comparative study of the influence of the gas injection system on the Nd:yttrium-aluminum-garnet laser cutting of advanced oxide ceramics. Rev Sci Instrum 74:4199–4205CrossRef
124.
go back to reference Na SJ, Yang YS, Koo HM, Kim TK (1989) Effect of shielding gas pressure in laser cutting of sheet metals. Trans ASME J Eng Mater Technol 111:314–318CrossRef Na SJ, Yang YS, Koo HM, Kim TK (1989) Effect of shielding gas pressure in laser cutting of sheet metals. Trans ASME J Eng Mater Technol 111:314–318CrossRef
125.
go back to reference Quintero F, Pou J, Fernández JL, Doval AF, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2006) Optimization of an off-axis nozzle for assist gas injection in laser fusion cutting. Opt Lasers Eng 44:1158–1171CrossRef Quintero F, Pou J, Fernández JL, Doval AF, Lusquiños F, Boutinguiza M, Soto R, Pérez-Amor M (2006) Optimization of an off-axis nozzle for assist gas injection in laser fusion cutting. Opt Lasers Eng 44:1158–1171CrossRef
126.
go back to reference Brandt AD, Settles GS (1997) Effect of nozzle orientation on gas dynamics of inert gas laser cutting of mild steel. J Laser Appl 9:269–277CrossRef Brandt AD, Settles GS (1997) Effect of nozzle orientation on gas dynamics of inert gas laser cutting of mild steel. J Laser Appl 9:269–277CrossRef
127.
go back to reference Chryssolouris G, Choi WC (1989) Gas jet effects on laser cutting. Proc SPIE 1042:86-96 Chryssolouris G, Choi WC (1989) Gas jet effects on laser cutting. Proc SPIE 1042:86-96
128.
go back to reference Hsu MJ, Molian PA (1995) Off-axial, gas-jet-assisted, laser cutting of 6.35-mm thick stainless steel. Trans ASME J Eng Ind 117:272–276CrossRef Hsu MJ, Molian PA (1995) Off-axial, gas-jet-assisted, laser cutting of 6.35-mm thick stainless steel. Trans ASME J Eng Ind 117:272–276CrossRef
129.
go back to reference Prasad GVS, Siores E, Wong WCK (1998) Laser cutting of metallic coated sheet steels. J Mater Process Technol 74:234–242CrossRef Prasad GVS, Siores E, Wong WCK (1998) Laser cutting of metallic coated sheet steels. J Mater Process Technol 74:234–242CrossRef
130.
go back to reference Arai T, Riches S (1997) Thick plate cutting with spining laser beam. In: Proceedings 16th international congress on applications of lasers and electro-optics, 19–26 Arai T, Riches S (1997) Thick plate cutting with spining laser beam. In: Proceedings 16th international congress on applications of lasers and electro-optics, 19–26
131.
go back to reference O’Neill W, Gabzdy JT (2000) New developments in laser-assisted oxygen cutting. Opt Lasers Eng 34:355–367CrossRef O’Neill W, Gabzdy JT (2000) New developments in laser-assisted oxygen cutting. Opt Lasers Eng 34:355–367CrossRef
132.
go back to reference Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol 168:438–447CrossRef Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol 168:438–447CrossRef
133.
go back to reference Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—A review. J Europ Ceram Soc 29:969–993CrossRef Samant AN, Dahotre NB (2009) Laser machining of structural ceramics—A review. J Europ Ceram Soc 29:969–993CrossRef
134.
go back to reference Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2011) Experimental and theoretical investigation of fibre laser crack-free cutting of thick-section alumina. Int J Mach Tool Manuf 51:859–870CrossRef Yan Y, Li L, Sezer K, Whitehead D, Ji L, Bao Y, Jiang Y (2011) Experimental and theoretical investigation of fibre laser crack-free cutting of thick-section alumina. Int J Mach Tool Manuf 51:859–870CrossRef
135.
go back to reference Lu G, Siores E, Wang B (1999) An empirical equation for crack formation in the laser cutting of ceramic plates. J Mater Process Technol 88:154–158CrossRef Lu G, Siores E, Wang B (1999) An empirical equation for crack formation in the laser cutting of ceramic plates. J Mater Process Technol 88:154–158CrossRef
136.
go back to reference Black I, Chua KL (1997) Laser cutting of thick ceramic tile. Opt Laser Technol 29:193–205CrossRef Black I, Chua KL (1997) Laser cutting of thick ceramic tile. Opt Laser Technol 29:193–205CrossRef
137.
go back to reference Black I, Livingstone SAJ, Chua KL (1998) A laser beam machining (LBM) database for the cutting of ceramic tile. J Mater Process Technol 84:47–55CrossRef Black I, Livingstone SAJ, Chua KL (1998) A laser beam machining (LBM) database for the cutting of ceramic tile. J Mater Process Technol 84:47–55CrossRef
138.
go back to reference Lei H, Lijun L (1999) A study of laser cutting engineering ceramics. Opt Laser Technol 31:531–538CrossRef Lei H, Lijun L (1999) A study of laser cutting engineering ceramics. Opt Laser Technol 31:531–538CrossRef
139.
go back to reference Wang J, Wong WCK (1999) CO2 laser cutting of metallic coated sheet steels. J Mater Process Technol 95:164–168CrossRef Wang J, Wong WCK (1999) CO2 laser cutting of metallic coated sheet steels. J Mater Process Technol 95:164–168CrossRef
140.
go back to reference De Graaf RF, Meijer J (2000) Laser cutting of metal laminates: analysis and experimental validation. J Mater Process Technol 103:23–28 De Graaf RF, Meijer J (2000) Laser cutting of metal laminates: analysis and experimental validation. J Mater Process Technol 103:23–28
141.
go back to reference Yilbas BS, Khan S, Raza K, Keles O, Ubeyli M, Demir T, Karakas MS (2010) Laser cutting of 7,050 Al alloy reinforced with Al2O3 and B4C composites. Int J Adv Manuf Technol 50:185–193CrossRef Yilbas BS, Khan S, Raza K, Keles O, Ubeyli M, Demir T, Karakas MS (2010) Laser cutting of 7,050 Al alloy reinforced with Al2O3 and B4C composites. Int J Adv Manuf Technol 50:185–193CrossRef
142.
go back to reference Kagawa Y, Utsunomiya S, Kogo Y (1989) Laser cutting of CVD-SiC fibre/A6061 composite. J Mater Sci Lett 8:681–683CrossRef Kagawa Y, Utsunomiya S, Kogo Y (1989) Laser cutting of CVD-SiC fibre/A6061 composite. J Mater Sci Lett 8:681–683CrossRef
143.
go back to reference Cenna AA, Mathew P (1997) Evaluation of cut quality of fibre-reinforced plastics—A review. Int J Mach Tool Manuf 37:723–736CrossRef Cenna AA, Mathew P (1997) Evaluation of cut quality of fibre-reinforced plastics—A review. Int J Mach Tool Manuf 37:723–736CrossRef
144.
go back to reference Mello MD (1986) Laser cutting of non-metallic composites. Proc SPIE 668:288–290CrossRef Mello MD (1986) Laser cutting of non-metallic composites. Proc SPIE 668:288–290CrossRef
145.
go back to reference Caprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tool Manuf 28:389–398CrossRef Caprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tool Manuf 28:389–398CrossRef
146.
go back to reference Ready JF (1997) Industrial Applications of Lasers. Academic Press, San Diego Ready JF (1997) Industrial Applications of Lasers. Academic Press, San Diego
147.
go back to reference Migliore L (1996) Laser-material interactions. In: Migliore L (ed) Laser Materials Processing. Marcel Dekker, Inc., New York Migliore L (1996) Laser-material interactions. In: Migliore L (ed) Laser Materials Processing. Marcel Dekker, Inc., New York
149.
go back to reference Olsen FO (2011) Laser cutting from CO2 laser to disk or fiber laser—possibilities and challenges. In: Proceedings 30th international congress on applications of lasers and electro-optics, Paper #101 Olsen FO (2011) Laser cutting from CO2 laser to disk or fiber laser—possibilities and challenges. In: Proceedings 30th international congress on applications of lasers and electro-optics, Paper #101
150.
go back to reference Fieret J, Terry MJ, Ward BA (1986) Aerodynamic interactions during laser cutting. Proc SPIE 668:53–62CrossRef Fieret J, Terry MJ, Ward BA (1986) Aerodynamic interactions during laser cutting. Proc SPIE 668:53–62CrossRef
151.
go back to reference Fieret J, Terry MJ, Ward BA (1987) Overview of flow dynamics in gas-assisted laser cutting. Proc SPIE 801:243–250CrossRef Fieret J, Terry MJ, Ward BA (1987) Overview of flow dynamics in gas-assisted laser cutting. Proc SPIE 801:243–250CrossRef
152.
go back to reference Molian PA (1993) Dual-beam CO2 laser cutting of thick metallic materials. J Mater Sci 28:1738–1748CrossRef Molian PA (1993) Dual-beam CO2 laser cutting of thick metallic materials. J Mater Sci 28:1738–1748CrossRef
153.
go back to reference Toyserkani E, Khajepour A, Corbin S (2005) Laser Cladding. CRC Press LLC, Boca Raton Toyserkani E, Khajepour A, Corbin S (2005) Laser Cladding. CRC Press LLC, Boca Raton
154.
go back to reference Nath AK (2013) High power lasers in material processing applications: an overview of recent development. In: Majumdar JD, Manna I (eds) Laser-assisted fabrication of materials. Springer-Verlag, Berlin Nath AK (2013) High power lasers in material processing applications: an overview of recent development. In: Majumdar JD, Manna I (eds) Laser-assisted fabrication of materials. Springer-Verlag, Berlin
155.
go back to reference Steen WM, Mazumder J (2010) Laser Material Processing. Springer, London Steen WM, Mazumder J (2010) Laser Material Processing. Springer, London
156.
go back to reference Powell J, Frass K, Menzies IA, Fuhr H (1988) CO2 laser cutting of non-ferrous metals. Proc SPIE 1020:156–163CrossRef Powell J, Frass K, Menzies IA, Fuhr H (1988) CO2 laser cutting of non-ferrous metals. Proc SPIE 1020:156–163CrossRef
157.
go back to reference Riveiro A, Quintero F, Lusquiños F, Comesaña R, del Val J, Pou J (2011) The role of the assist gas nature in laser cutting of aluminum alloys. Phys Procedia 12(Part A): 548–554 Riveiro A, Quintero F, Lusquiños F, Comesaña R, del Val J, Pou J (2011) The role of the assist gas nature in laser cutting of aluminum alloys. Phys Procedia 12(Part A): 548–554
Metadata
Title
Laser Beam Machining
Authors
Shoujin Sun
Milan Brandt
Copyright Year
2013
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5179-1_2

Premium Partners