Skip to main content
Top

2024 | OriginalPaper | Chapter

Lattice-Based Kernel Approximation and Serendipitous Weights for Parametric PDEs in Very High Dimensions

Authors : Vesa Kaarnioja, Frances Y. Kuo, Ian H. Sloan

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We describe a fast method for solving elliptic partial differential equations (PDEs) with uncertain coefficients using kernel interpolation at a lattice point set. By representing the input random field of the system using the model proposed by Kaarnioja, Kuo, and Sloan (SIAM J. Numer. Anal. 2020), in which a countable number of independent random variables enter the random field as periodic functions, it was shown by Kaarnioja, Kazashi, Kuo, Nobile, and Sloan (Numer. Math. 2022) that the lattice-based kernel interpolant can be constructed for the PDE solution as a function of the stochastic variables in a highly efficient manner using fast Fourier transform (FFT). In this work, we discuss the connection between our model and the popular “affine and uniform model” studied widely in the literature of uncertainty quantification for PDEs with uncertain coefficients. We also propose a new class of product weights entering the construction of the kernel interpolant, which dramatically improve the computational performance of the kernel interpolant for PDE problems with uncertain coefficients, and allow us to tackle function approximation problems up to very high dimensionalities. Numerical experiments are presented to showcase the performance of the new weights.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Adcock, B., Brugiapaglia, S., Webster, C.G.: Sparse Polynomial Approximation of High-Dimensional Functions. Society for Industrial and Applied Mathematics (2022) Adcock, B., Brugiapaglia, S., Webster, C.G.: Sparse Polynomial Approximation of High-Dimensional Functions. Society for Industrial and Applied Mathematics (2022)
2.
go back to reference Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.: On the reconstruction of function values at subsampled quadrature points. Math. Comp. 93, 785–809 (2024). [math.NA] Bartel, F., Kämmerer, L., Potts, D., Ullrich, T.: On the reconstruction of function values at subsampled quadrature points. Math. Comp. 93, 785–809 (2024). [math.NA]
3.
go back to reference Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-\(1\) lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017)MathSciNetCrossRef Byrenheid, G., Kämmerer, L., Ullrich, T., Volkmer, T.: Tight error bounds for rank-\(1\) lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136, 993–1034 (2017)MathSciNetCrossRef
5.
go back to reference Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters. In: Brenner, S.C., Shparlinski, I., Shu, C.-W., Szyld, D. (eds.) Celebrating 75 Years of Mathematics of Computation, Contemporary Mathematics, vol. 754, pp. 93–113. AMS (2020) Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Lattice algorithms for multivariate approximation in periodic spaces with general weight parameters. In: Brenner, S.C., Shparlinski, I., Shu, C.-W., Szyld, D. (eds.) Celebrating 75 Years of Mathematics of Computation, Contemporary Mathematics, vol. 754, pp. 93–113. AMS (2020)
6.
go back to reference Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights. Math. Comp. 90, 787–812 (2021) Cools, R., Kuo, F.Y., Nuyens, D., Sloan, I.H.: Fast component-by-component construction of lattice algorithms for multivariate approximation with POD and SPOD weights. Math. Comp. 90, 787–812 (2021)
7.
go back to reference Dick, J., Gantner, R.N., Le Gia, Q.T., Schwab, Ch.: Higher order quasi-Monte Carlo integration for Bayesian PDE inversion. Comput. Math. Appl. 77, 144–172 (2019)MathSciNetCrossRef Dick, J., Gantner, R.N., Le Gia, Q.T., Schwab, Ch.: Higher order quasi-Monte Carlo integration for Bayesian PDE inversion. Comput. Math. Appl. 77, 144–172 (2019)MathSciNetCrossRef
8.
go back to reference Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, Ch.: Higher order QMC Galerkin discretization for parametric operator equations. SIAM J. Numer. Anal. 52, 2676–2702 (2014)MathSciNetCrossRef Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, Ch.: Higher order QMC Galerkin discretization for parametric operator equations. SIAM J. Numer. Anal. 52, 2676–2702 (2014)MathSciNetCrossRef
9.
go back to reference Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harm. Anal. 63, 113–134 (2023)CrossRef Dolbeault, M., Krieg, D., Ullrich, M.: A sharp upper bound for sampling numbers in \(L_2\). Appl. Comput. Harm. Anal. 63, 113–134 (2023)CrossRef
10.
go back to reference Gantner, R.N., Herrmann, L., Schwab, Ch.: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer. Anal. 56, 111–135 (2018)MathSciNetCrossRef Gantner, R.N., Herrmann, L., Schwab, Ch.: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer. Anal. 56, 111–135 (2018)MathSciNetCrossRef
11.
go back to reference Gantner, R.N., Peters, M.D.: Higher-order quasi-Monte Carlo for Bayesian shape inversion. SIAM/ASA J. Uncertain. Quantif. 6, 707–736 (2018) Gantner, R.N., Peters, M.D.: Higher-order quasi-Monte Carlo for Bayesian shape inversion. SIAM/ASA J. Uncertain. Quantif. 6, 707–736 (2018)
12.
go back to reference Gilbert, A.D., Graham, I.G., Kuo, F.Y., Scheichl, R., Sloan, I.H.: Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients. Numer. Math. 142, 863–915 (2019)MathSciNetCrossRef Gilbert, A.D., Graham, I.G., Kuo, F.Y., Scheichl, R., Sloan, I.H.: Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients. Numer. Math. 142, 863–915 (2019)MathSciNetCrossRef
13.
go back to reference Gilbert, A.D., Scheichl, R.: Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis. IMA J. Numer. Anal. 44, 466–503 (2023)MathSciNetCrossRef Gilbert, A.D., Scheichl, R.: Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems I: regularity and error analysis. IMA J. Numer. Anal. 44, 466–503 (2023)MathSciNetCrossRef
14.
go back to reference Gilbert, A.D., Scheichl, R.: Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal. 44, 504–535 (2023)MathSciNetCrossRef Gilbert, A.D., Scheichl, R.: Multilevel quasi-Monte Carlo for random elliptic eigenvalue problems II: efficient algorithms and numerical results. IMA J. Numer. Anal. 44, 504–535 (2023)MathSciNetCrossRef
15.
go back to reference Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9, 354–383 (2021) Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: A quasi-Monte Carlo method for optimal control under uncertainty. SIAM/ASA J. Uncertain. Quantif. 9, 354–383 (2021)
16.
go back to reference Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration. Numer. Math. 156, 565–608 (2024). [math.NA] Guth, P.A., Kaarnioja, V., Kuo, F.Y., Schillings, C., Sloan, I.H.: Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration. Numer. Math. 156, 565–608 (2024). [math.NA]
17.
go back to reference Hakula, H., Harbrecht, H., Kaarnioja, V., Kuo, F. Y., Sloan, I.H.: Uncertainty quantification for random domains using periodic random variables. Numer. Math. 156, 273–317 (2024) Hakula, H., Harbrecht, H., Kaarnioja, V., Kuo, F. Y., Sloan, I.H.: Uncertainty quantification for random domains using periodic random variables. Numer. Math. 156, 273–317 (2024)
18.
go back to reference Harbrecht, H., Peters, M., Siebenmorgen, M.: Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134, 823–856 (2016)MathSciNetCrossRef Harbrecht, H., Peters, M., Siebenmorgen, M.: Analysis of the domain mapping method for elliptic diffusion problems on random domains. Numer. Math. 134, 823–856 (2016)MathSciNetCrossRef
19.
go back to reference Herrmann, L., Keller, M., Schwab, Ch.: Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems. Math. Comp. 90, 1831–1860 (2021) Herrmann, L., Keller, M., Schwab, Ch.: Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems. Math. Comp. 90, 1831–1860 (2021)
20.
go back to reference Kaarnioja, V., Kazashi, Y., Kuo, F.Y., Nobile, F., Sloan, I.H.: Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification. Numer. Math. 150, 33–77 (2022)MathSciNetCrossRef Kaarnioja, V., Kazashi, Y., Kuo, F.Y., Nobile, F., Sloan, I.H.: Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification. Numer. Math. 150, 33–77 (2022)MathSciNetCrossRef
21.
go back to reference Kaarnioja, V., Kuo, F.Y., Sloan, I.H.: Uncertainty quantification using periodic random variables. SIAM J. Numer. Anal. 58, 1068–1091 (2020)MathSciNetCrossRef Kaarnioja, V., Kuo, F.Y., Sloan, I.H.: Uncertainty quantification using periodic random variables. SIAM J. Numer. Anal. 58, 1068–1091 (2020)MathSciNetCrossRef
22.
go back to reference Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-\(1\) lattice sampling. J. Complexity 31, 543–576 (2015) Kämmerer, L., Potts, D., Volkmer, T.: Approximation of multivariate periodic functions by trigonometric polynomials based on rank-\(1\) lattice sampling. J. Complexity 31, 543–576 (2015)
23.
go back to reference Kämmerer, L., Volkmer, T.: Approximation of multivariate periodic functions based on sampling along multiple rank-\(1\) lattices. J. Approx. Theory 246, 1–17 (2019)MathSciNetCrossRef Kämmerer, L., Volkmer, T.: Approximation of multivariate periodic functions based on sampling along multiple rank-\(1\) lattices. J. Approx. Theory 246, 1–17 (2019)MathSciNetCrossRef
25.
go back to reference Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comput. Math. 21, 1141–1151 (2021)MathSciNetCrossRef Krieg, D., Ullrich, M.: Function values are enough for \(L_2\)-approximation. Found. Comput. Math. 21, 1141–1151 (2021)MathSciNetCrossRef
27.
go back to reference Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients—a survey of analysis and implementation. Found. Comput. Math. 16, 1631–1696 (2016)MathSciNetCrossRef Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients—a survey of analysis and implementation. Found. Comput. Math. 16, 1631–1696 (2016)MathSciNetCrossRef
28.
go back to reference Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to PDEs with random coefficients—an overview and tutorial. In: Owen, A.B., Glynn, P.W. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2016, pp. 53–71. Springer, Berlin (2018) Kuo, F.Y., Nuyens, D.: Application of quasi-Monte Carlo methods to PDEs with random coefficients—an overview and tutorial. In: Owen, A.B., Glynn, P.W. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2016, pp. 53–71. Springer, Berlin (2018)
29.
go back to reference Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)MathSciNetCrossRef Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50, 3351–3374 (2012)MathSciNetCrossRef
30.
go back to reference Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006) Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Lattice rules for multivariate approximation in the worst case setting. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 289–330. Springer, Berlin (2006)
31.
go back to reference Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comput. Math. 22, 445–468 (2022)MathSciNetCrossRef Nagel, N., Schäfer, M., Ullrich, T.: A new upper bound for sampling numbers. Found. Comput. Math. 22, 445–468 (2022)MathSciNetCrossRef
32.
go back to reference Sloan, I.H., Woźniakowski., H.J.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17, 697–721 (2001) Sloan, I.H., Woźniakowski., H.J.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17, 697–721 (2001)
33.
go back to reference Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)MathSciNetCrossRef Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)MathSciNetCrossRef
34.
go back to reference Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer, Berlin (2006) Zeng, X.Y., Leung, K.T., Hickernell, F.J.: Error analysis of splines for periodic problems using lattice designs. In: Niederreiter, H., Talay, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2004, pp. 501–514. Springer, Berlin (2006)
35.
go back to reference Zeng, X.Y., Kritzer, P., Hickernell, F.J.: Spline methods using integration lattices and digital nets. Constr. Approx. 30, 529–555 (2009)MathSciNetCrossRef Zeng, X.Y., Kritzer, P., Hickernell, F.J.: Spline methods using integration lattices and digital nets. Constr. Approx. 30, 529–555 (2009)MathSciNetCrossRef
Metadata
Title
Lattice-Based Kernel Approximation and Serendipitous Weights for Parametric PDEs in Very High Dimensions
Authors
Vesa Kaarnioja
Frances Y. Kuo
Ian H. Sloan
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_4

Premium Partner