Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Layered Double Hydroxides Supported on Multi-walled Carbon Nanotubes for CO2 Adsorption

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is concerned with the study of layered double hydroxides supported on multi-walled carbon nanotubes. The chapter begins describing the methodology used to synthesise LDHs and LDH/carbon hybrids. Subsequently, the structural and physical properties of the adsorbents are examined by a range of characterisation techniques. Finally the adsorption capacity and thermal stability of the materials are reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
After thermal treatment layered double hydroxides (LDHs) are transformed into layered double oxides (LDOs), which are active for CO2 adsorption at relatively high temperature (see Chap. 2, Sect. 2.​4.​1).
 
2
All the adsorbents presented in this chapter were prepared as part of this PhD project in the Department of Chemistry following the procedures developed by the Shaffer’s group. The carbon supported hybrids in small scale (~0.8 g) were synthesised by Dr. Garcia-Gallastegui.
 
3
Readers are referred to Chap. 2, Sect. 2.​4.​1, for further details.
 
4
The titration of the oxidised MWCNTs was carried out by Dr. Garcia-Gallastegui and is included for the sake of completeness of the chapter.
 
5
This value was obtained using the surface area of the oxidised MWCNTs (191 m2 g−1).
 
6
In the blank experiment the unsupported LDO was not exposed to CO2 adsorption. The pre-calcined sample was pretreated at 673 K during 1 h under flowing argon. Then the temperature was decreased to 313 K and the CO2 evolved during a temperature program was monitored by MS.
 
7
The deconvolution of the TPD profile was carried out using Fityk 0.8.9.
 
8
The CO2-TPD profile of the pure LDO is further discussed in Chap. 5 (Sect. 5.​3.​4), where the CO2 uptake of the sample and the percentage contribution of each desorption peak are given.
 
9
Representative adsorption profiles of the pure LDO and LDO1 at different temperatures and PCO2 = 200 mbar are presented in Appendix C.3.
 
10
The adsorption capacity at 573 K and PCO2 = 200 mbar was found to be 0.09 mol CO2/kg adsorbent (i.e. 0.43 mol CO2/kg LDO).
 
Literature
1.
go back to reference Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.CrossRef
2.
go back to reference Wang, Q., Luo, J., Zhong, Z., & Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 4(1), 42–55.CrossRef Wang, Q., Luo, J., Zhong, Z., & Borgna, A. (2011). CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 4(1), 42–55.CrossRef
3.
go back to reference Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef Othman, M. R., Rasid, N. M., & Fernando, W. J. N. (2006). Mg–Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption. Chemical Engineering Science, 61(5), 1555–1560.CrossRef
4.
go back to reference Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef Aschenbrenner, O., McGuire, P., Alsamaq, S., Wang, J., Supasitmongkol, S., Al-Duri, B., et al. (2011). Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions. Chemical Engineering Research and Design, 89(9), 1711–1721.CrossRef
5.
go back to reference Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2009). Support and size effects of activated hydrotalcites for precombustion CO2 capture. Industrial and Engineering Chemistry Research, 49(3), 1229–1235.CrossRef
6.
go back to reference Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2010). On the Influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Industrial and Engineering Chemistry Research, 49(17), 8086–8093.CrossRef Meis, N. N. A. H., Bitter, J. H., & de Jong, K. P. (2010). On the Influence and role of alkali metals on supported and unsupported activated hydrotalcites for CO2 sorption. Industrial and Engineering Chemistry Research, 49(17), 8086–8093.CrossRef
7.
go back to reference Toebes, M. L., van Heeswijk, J. M. P., Bitter, J. H., Jos van Dillen, A., & de Jong, K. P. (2004). The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon, 42(2), 307–315.CrossRef Toebes, M. L., van Heeswijk, J. M. P., Bitter, J. H., Jos van Dillen, A., & de Jong, K. P. (2004). The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon, 42(2), 307–315.CrossRef
8.
go back to reference Wong, H. S. P., & Akinwande, D. (2011). Carbon nanotube and graphene device physics. NY, USA: Cambridge University Press. Wong, H. S. P., & Akinwande, D. (2011). Carbon nanotube and graphene device physics. NY, USA: Cambridge University Press.
9.
go back to reference Krueger, A. (2010). Carbon materials and nanotechnology. Cornwall, UK: WILEY-VCH.CrossRef Krueger, A. (2010). Carbon materials and nanotechnology. Cornwall, UK: WILEY-VCH.CrossRef
10.
go back to reference Othman, M. R., Helwani, Z., Martunus, & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry, 23(9), 335–346.CrossRef Othman, M. R., Helwani, Z., Martunus, & Fernando, W. J. N. (2009). Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Applied Organometallic Chemistry, 23(9), 335–346.CrossRef
11.
go back to reference Georgakilas, V., Gournis, D., Karakassides, M. A., Bakandritsos, A., & Petridis, D. (2004). Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives. Carbon, 42(4), 865–870.CrossRef Georgakilas, V., Gournis, D., Karakassides, M. A., Bakandritsos, A., & Petridis, D. (2004). Organic derivatization of single-walled carbon nanotubes by clays and intercalated derivatives. Carbon, 42(4), 865–870.CrossRef
12.
go back to reference Du, B., & Fang, Z. (2010). The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology, 21(31), 315603.CrossRef Du, B., & Fang, Z. (2010). The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology, 21(31), 315603.CrossRef
13.
go back to reference Yang, J.-I., & Kim, J.-N. (2006). Hydrotalcites for adsorption of CO2 at high temperature. Korean Journal of Chemical Engineering, 23(1), 77–80.CrossRef Yang, J.-I., & Kim, J.-N. (2006). Hydrotalcites for adsorption of CO2 at high temperature. Korean Journal of Chemical Engineering, 23(1), 77–80.CrossRef
14.
go back to reference Climent, M. J., Corma, A., Iborra, S., Epping, K., & Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316–326.CrossRef Climent, M. J., Corma, A., Iborra, S., Epping, K., & Velty, A. (2004). Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures. Journal of Catalysis, 225(2), 316–326.CrossRef
15.
go back to reference Fogden, S., Verdejo, R., Cottam, B., & Shaffer, M. S. P. (2008). Purification of single walled carbon nanotubes: The problem with oxidation debris. Chemical Physics Letters, 460, 162–167.CrossRef Fogden, S., Verdejo, R., Cottam, B., & Shaffer, M. S. P. (2008). Purification of single walled carbon nanotubes: The problem with oxidation debris. Chemical Physics Letters, 460, 162–167.CrossRef
16.
go back to reference Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(22), 7504–7509.CrossRef Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial and Engineering Chemistry Research, 45(22), 7504–7509.CrossRef
17.
go back to reference Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef Hutson, N. D., Speakman, S. A., & Payzant, E. A. (2004). Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chemistry of Materials, 16(21), 4135–4143.CrossRef
18.
go back to reference Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., & Haddon, R. C. (2001). Determination of the acidic sites of purified single-walled carbon nanotubes by acid—base titration. Chemical Physics Letters, 345(1–2), 25–28.CrossRef Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., & Haddon, R. C. (2001). Determination of the acidic sites of purified single-walled carbon nanotubes by acid—base titration. Chemical Physics Letters, 345(1–2), 25–28.CrossRef
19.
go back to reference Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 5, 513–515.CrossRef Verdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., & Shaffer, M. (2007). Removal of oxidation debris from multi-walled carbon nanotubes. Chemical Communications, 5, 513–515.CrossRef
20.
go back to reference Zhao, H., & Nagy, K. L. (2004). Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274(2), 613–624.CrossRef Zhao, H., & Nagy, K. L. (2004). Dodecyl sulfate–hydrotalcite nanocomposites for trapping chlorinated organic pollutants in water. Journal of Colloid and Interface Science, 274(2), 613–624.CrossRef
21.
go back to reference Millange, F., Walton, R. I., & O’Hare, D. (2000). Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. Journal of Materials Chemistry, 10(7), 1713–1720.CrossRef Millange, F., Walton, R. I., & O’Hare, D. (2000). Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al–carbonate hydrotalcite-like compounds. Journal of Materials Chemistry, 10(7), 1713–1720.CrossRef
22.
go back to reference Wang, H., Xiang, X., & Li, F. (2010). Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites. Journal of Materials Chemistry, 20(19), 3944–3952.CrossRef Wang, H., Xiang, X., & Li, F. (2010). Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites. Journal of Materials Chemistry, 20(19), 3944–3952.CrossRef
23.
go back to reference Huang, S., Peng, H., Tjiu, W. W., Yang, Z., Zhu, H., Tang, T., et al. (2010). Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. The Journal of Physical Chemistry B, 114(50), 16766–16772.CrossRef Huang, S., Peng, H., Tjiu, W. W., Yang, Z., Zhu, H., Tang, T., et al. (2010). Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites. The Journal of Physical Chemistry B, 114(50), 16766–16772.CrossRef
24.
go back to reference León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef León, M., Díaz, E., Bennici, S., Vega, A., Ordóñez, S., & Auroux, A. (2010). Adsorption of CO2 on hydrotalcite-derived mixed oxides: Sorption mechanisms and consequences for adsorption irreversibility. Industrial and Engineering Chemistry Research, 49(8), 3663–3671.CrossRef
25.
go back to reference Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., et al. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55. Turco, M., Bagnasco, G., Costantino, U., Marmottini, F., Montanari, T., Ramis, G., et al. (2004). Production of hydrogen from oxidative steam reforming of methanol: I. Preparation and characterization of Cu/ZnO/Al2O3 catalysts from a hydrotalcite-like LDH precursor. Journal of Catalysis, 228(1), 43–55.
26.
go back to reference Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. London, UK: Academic Press. Rouquerol, F., Rouquerol, J., & Sing, K. (1999). Adsorption by powders and porous solids. London, UK: Academic Press.
27.
go back to reference Di Cosimo, J. I., Apesteguía, C. R., Ginés, M. J. L., & Iglesia, E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. Journal of Catalysis, 190(2), 261–275.CrossRef Di Cosimo, J. I., Apesteguía, C. R., Ginés, M. J. L., & Iglesia, E. (2000). Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. Journal of Catalysis, 190(2), 261–275.CrossRef
28.
go back to reference Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef Debecker, D. P., Gaigneaux, E. M., & Busca, G. (2009). Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chemistry—A European Journal, 15(16), 3920–3935.CrossRef
29.
go back to reference Delpeux, S., Szostak, K., Frackowiak, E., & Béguin, F. (2005). An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chemical Physics Letters, 404(4–6), 374–378.CrossRef Delpeux, S., Szostak, K., Frackowiak, E., & Béguin, F. (2005). An efficient two-step process for producing opened multi-walled carbon nanotubes of high purity. Chemical Physics Letters, 404(4–6), 374–378.CrossRef
30.
go back to reference Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef Hufton, J. R., Mayorga, S., & Sircar, S. (1999). Sorption-enhanced reaction process for hydrogen production. AIChE Journal, 45(2), 248–256.CrossRef
31.
go back to reference Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef Ding, Y., & Alpay, E. (2000). Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent. Chemical Engineering Science, 55(17), 3461–3474.CrossRef
32.
go back to reference Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef Ram Reddy, M. K., Xu, Z. P., & Diniz da Costa, J. C. (2008). Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives. Industrial and Engineering Chemistry Research, 47(8), 2630–2635.CrossRef
33.
go back to reference Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef Carvill, B. T., Hufton, J. R., Anand, M., & Sircar, S. (1996). Sorption-enhanced reaction process. AIChE Journal, 42(10), 2765–2772.CrossRef
34.
go back to reference Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14(6), 781–789.CrossRef
35.
go back to reference Menzel, R., Tran, M. Q., Menner, A., Kay, C. W. M., Bismarck, A., & Shaffer, M. S. P. (2010). A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 1(5), 603–608.CrossRef Menzel, R., Tran, M. Q., Menner, A., Kay, C. W. M., Bismarck, A., & Shaffer, M. S. P. (2010). A versatile, solvent-free methodology for the functionalisation of carbon nanotubes. Chemical Science, 1(5), 603–608.CrossRef
Metadata
Title
Layered Double Hydroxides Supported on Multi-walled Carbon Nanotubes for CO2 Adsorption
Author
Diana Iruretagoyena Ferrer
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-41276-4_4