Skip to main content
Top
Published in:

20-06-2024

Layered synthesis of workpieces by mig-pulse surface method using austenitic metal-cored wire with nitrogen

Authors: A. S. Smolentsev, A. V. Berezovsky, D. N. Trushnikov, G. L. Permyakov, V. E. Veselova, A. V. Shak, E. A. Usoltsev

Published in: Metallurgist | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

WAAM technology (Wire + Arc Additive Manufacture) is a new method of additive manufacturing using wire as a construction material. The high productivity of the process, the ability to construct large-sized products without the need to use a controlled atmosphere chamber, and the low cost of equipment and construction materials allow using the WAAM technology to built products of simple and medium complexity with the highest economic efficiency. However, WAAM technologies in MIG-Pulse/CMT surfacing processes have a number of disadvantages, such as significant size of the heat-affected zone (HAZ) and large sizes of the build-up layer, which leads to undesirable temperature gradients and the accumulation of residual stresses. A further way to improve WAAM technology is to use metal-cored wires. For the research, metal-cored wire Cr20Mn5Ni4Mo2.5Cu3N0.3 Ø 1.6 mm was developed. It has been established that the use of metal-cored wire allows producing a defect-free surfaced metal with an austenite-ferritic structure (δF ≈ 1–3%), which has high strength and plastic characteristics (σB = 810 MPa, σ0,2 = 500 MPa, δ = 40%). The yield strength of the developed composition is more than 2 times higher than that of the widespread austenitic steel of the Kh18N10T type (σ0,2 = 206 MPa). Further research will be aimed at improving the impact strength of the surfaced cast metal by optimizing the composition of the metal-cored wire.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zlenko MA, Nagaitsev MV, Dovbysh VM (2015) Additive technologies in mechanical engineering. GNTs RF FGUP “NAMI,”, Moscow Zlenko MA, Nagaitsev MV, Dovbysh VM (2015) Additive technologies in mechanical engineering. GNTs RF FGUP “NAMI,”, Moscow
2.
go back to reference Shishkovskii IV (2016) Fundamentals of high-resolution additive technologies. Piter, St. Petersburg Shishkovskii IV (2016) Fundamentals of high-resolution additive technologies. Piter, St. Petersburg
3.
go back to reference Shishkovskii IV (2009) Laser synthesis of functional-gradient Mesostructures and volumetric products. FIZMATLIT, Moscow Shishkovskii IV (2009) Laser synthesis of functional-gradient Mesostructures and volumetric products. FIZMATLIT, Moscow
4.
go back to reference Williams SW, Martina F, Addison AC et al (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef Williams SW, Martina F, Addison AC et al (2016) Wire + arc additive manufacturing. Mater Sci Technol 32(7):641–647CrossRef
5.
go back to reference Zhukov VV, Grigorenko GM, Shapovalov VA (2016) Additive production of metal products (Review). Avtomat Svarka 6(5):148–153CrossRef Zhukov VV, Grigorenko GM, Shapovalov VA (2016) Additive production of metal products (Review). Avtomat Svarka 6(5):148–153CrossRef
6.
go back to reference Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Tech 1–4(81):465–481CrossRef Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Tech 1–4(81):465–481CrossRef
7.
go back to reference Korzhyk VN, Yu. Khaskin V, Grinyuk AA et al (2016) Three-dimensional printing of metal volumetric products of complex shape based on plasma-arc welding technologies (Review). Avtomat Svarka 5–6(753):127CrossRef Korzhyk VN, Yu. Khaskin V, Grinyuk AA et al (2016) Three-dimensional printing of metal volumetric products of complex shape based on plasma-arc welding technologies (Review). Avtomat Svarka 5–6(753):127CrossRef
8.
go back to reference Peleshenko SI, Korzhyk VN, Voitenko ON et al (2017) Analysis of the current state of additive welding technologies for manufacturing volume metallic products. Vost Evrop Zh Peredov Tekhnol 3(87):42–52 Peleshenko SI, Korzhyk VN, Voitenko ON et al (2017) Analysis of the current state of additive welding technologies for manufacturing volume metallic products. Vost Evrop Zh Peredov Tekhnol 3(87):42–52
9.
go back to reference Shlepakov VN, Kotel’chuk AS, Naumeiko SM, Bilinets AV (2005) Influence of the core composition of flux-cored wire and shielding gas on the stability of the arc welding process. Avtomat Svarka (6):18–22 Shlepakov VN, Kotel’chuk AS, Naumeiko SM, Bilinets AV (2005) Influence of the core composition of flux-cored wire and shielding gas on the stability of the arc welding process. Avtomat Svarka (6):18–22
10.
go back to reference Shlepakov VN, Bilinets AV (2003) Flux-cored wires with a metal core for welding in shielding gases. Avtomat Svarka (3):53–54 Shlepakov VN, Bilinets AV (2003) Flux-cored wires with a metal core for welding in shielding gases. Avtomat Svarka (3):53–54
11.
go back to reference Pokhodnya IK, Shlepakov VN, Al’ter VF (1980) Production of flux-cored wire. Vysshaya Shkola, Kyiv Pokhodnya IK, Shlepakov VN, Al’ter VF (1980) Production of flux-cored wire. Vysshaya Shkola, Kyiv
12.
go back to reference Shlepakov VN (2014) Physico-metallurgical and welding-technological properties of flux-cored wires in shielding gases for welding structural steels. Avtomat Svarka 6–7:56–59 Shlepakov VN (2014) Physico-metallurgical and welding-technological properties of flux-cored wires in shielding gases for welding structural steels. Avtomat Svarka 6–7:56–59
13.
go back to reference Pokhodnya IK, Suptel’ AM, Shlepakov VN (1972) Welding with flux-cored wire. Naukova Dumka, Kyiv Pokhodnya IK, Suptel’ AM, Shlepakov VN (1972) Welding with flux-cored wire. Naukova Dumka, Kyiv
14.
go back to reference Shlepakov VN, Kotel’chuk AS, Gavrilyuk YA (2017) Advanced flux-cored wires for welding low-alloy steels of increased and high strength. Avtomat Svarka 11(769):13–18CrossRef Shlepakov VN, Kotel’chuk AS, Gavrilyuk YA (2017) Advanced flux-cored wires for welding low-alloy steels of increased and high strength. Avtomat Svarka 11(769):13–18CrossRef
15.
go back to reference Berezovsky AV, Smolentsev AS, Shalimov MP et al (2021) Current state and problems of weldability of high-strength direct-hardening steels. Tyazh Mashinostr 7–8:2–9 Berezovsky AV, Smolentsev AS, Shalimov MP et al (2021) Current state and problems of weldability of high-strength direct-hardening steels. Tyazh Mashinostr 7–8:2–9
16.
go back to reference Gushchin IA, Avdeev AR, Shvets AA, Drobotov AV (2015) Principles of creating a program for operating a volumetric printing device using a 3D model. Izv Volgogr Gos Tekh Univ (11):50–53 Gushchin IA, Avdeev AR, Shvets AA, Drobotov AV (2015) Principles of creating a program for operating a volumetric printing device using a 3D model. Izv Volgogr Gos Tekh Univ (11):50–53
17.
go back to reference Kartashev MF, Yurchenko AN, Grebenkin RD et al (2020) Studying the heat treatment effect on the microstructure and mechanical properties of aluminium magnesium-containing alloy 1580 samples produced by multilayer surfacing method. Vestn Mgtu Nosova 18(2):38–46 Kartashev MF, Yurchenko AN, Grebenkin RD et al (2020) Studying the heat treatment effect on the microstructure and mechanical properties of aluminium magnesium-containing alloy 1580 samples produced by multilayer surfacing method. Vestn Mgtu Nosova 18(2):38–46
18.
go back to reference Long CJ (1973) The ferrite content of austenitic stainless steel weld metal. Weld J 52(7):281–297 Long CJ (1973) The ferrite content of austenitic stainless steel weld metal. Weld J 52(7):281–297
19.
go back to reference Smolentsev AS, Berezovsky AV, Trushnikov DN, Permyakov GL (2022) Layered synthesis of workpieces by MIG-Pulse surfacing using austenitic metal-cored wire with nitrogen. In: Proceedings of the IX International Youth Scientific Conference “Physics. Technologies. Innovations. UrFU, Yekaterinburg Smolentsev AS, Berezovsky AV, Trushnikov DN, Permyakov GL (2022) Layered synthesis of workpieces by MIG-Pulse surfacing using austenitic metal-cored wire with nitrogen. In: Proceedings of the IX International Youth Scientific Conference “Physics. Technologies. Innovations. UrFU, Yekaterinburg
20.
go back to reference Lippol’d D, Koteki D (2011) Metallurgy of welding and weldability of stainless steels. Izd-vo Politekhnicheskogo Universiteta, St. Petersburg Lippol’d D, Koteki D (2011) Metallurgy of welding and weldability of stainless steels. Izd-vo Politekhnicheskogo Universiteta, St. Petersburg
21.
go back to reference Makarov EL, Yakushin BF (2014) Theory of weldability of steels and alloys. Izd-vo MGTU im. N. E. Baumana, Moscow Makarov EL, Yakushin BF (2014) Theory of weldability of steels and alloys. Izd-vo MGTU im. N. E. Baumana, Moscow
22.
go back to reference Kh. Shorshorov M, Erokhin AA, Chernyshova TA (1973) Hot cracks in welding heat-resistant alloys. Mashinostroenie, Moscow Kh. Shorshorov M, Erokhin AA, Chernyshova TA (1973) Hot cracks in welding heat-resistant alloys. Mashinostroenie, Moscow
23.
go back to reference Berezovskaya VV, Berezovsky AV (2019) Corrosion-resistant steels and alloys. Izd-vo Ural’skogo Universiteta, Yekaterinburg Berezovskaya VV, Berezovsky AV (2019) Corrosion-resistant steels and alloys. Izd-vo Ural’skogo Universiteta, Yekaterinburg
24.
go back to reference Zolotorevsky VS (1998) Mechanical properties of metals. MISIS, Moscow Zolotorevsky VS (1998) Mechanical properties of metals. MISIS, Moscow
25.
go back to reference Kostina MV, Rigina LG (2020) Nitrogen-containing steels and methods of their production. Izv Vuz Chern Metall 63(8):606–622 Kostina MV, Rigina LG (2020) Nitrogen-containing steels and methods of their production. Izv Vuz Chern Metall 63(8):606–622
26.
go back to reference Kostina MV, Yu. Polomoshnov P, Blinov VM et al (2019) Cold resistance of new casting Cr-Mn-Ni-Mo‑N steel with 0.5% of N. Part. 1. Izv Vuz Chern Metall 62(11):894–906 Kostina MV, Yu. Polomoshnov P, Blinov VM et al (2019) Cold resistance of new casting Cr-Mn-Ni-Mo‑N steel with 0.5% of N. Part. 1. Izv Vuz Chern Metall 62(11):894–906
Metadata
Title
Layered synthesis of workpieces by mig-pulse surface method using austenitic metal-cored wire with nitrogen
Authors
A. S. Smolentsev
A. V. Berezovsky
D. N. Trushnikov
G. L. Permyakov
V. E. Veselova
A. V. Shak
E. A. Usoltsev
Publication date
20-06-2024
Publisher
Springer US
Published in
Metallurgist / Issue 1/2024
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-024-01710-9

Other articles of this Issue 1/2024

Metallurgist 1/2024 Go to the issue

Premium Partners