Skip to main content
Top

2024 | OriginalPaper | Chapter

Leading and Trailing Edge Configuration for Distributed Electric Propulsion Systems

Authors : Mithun Eqbal, Matthew Marino, Patrick Farley

Published in: Green Approaches in Sustainable Aviation

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In pusher-type aircraft, the impact of putting the propeller on the trailing edge and impact of propeller on the tip of the wing have been carefully researched. The results reveal an increase in propelling efficiency and a reduction in drag. In addition, there is a lot of study being done right now on distributed propulsion and the advantages it has in terms of aerodynamic effects and propelling advantages. This paves way for the possibility of positioning the propeller on the trailing edge of the wing and using the increased propulsive efficiency afforded by boundary layer ingestion (BLI). This research studies the effect of positioning the propeller on the trailing edge of the wing instead of the leading edge on power savings and advances in propulsive efficiency. A scaled remotely piloted aircraft systems (RPAS) wing is tested in a wind tunnel utilizing a brushless direct current (BLDC) engine with several propeller configurations. A new term, ingestion ratio (IR), is introduced to describe the effect of the change in propeller size on power savings. The investigation revealed that positioning the propeller on the trailing edge of the wing increases the propelling efficiency by up to 5.8% and saves up to 24.7% of electricity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Berg, F., Palmer, J., Miller, P., Husband, M., & Dodds, G. (2015). HTS electrical system for a distributed propulsion aircraft. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef Berg, F., Palmer, J., Miller, P., Husband, M., & Dodds, G. (2015). HTS electrical system for a distributed propulsion aircraft. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef
go back to reference Blumenthal, B. T., Elmiligui, A. A., Geiselhart, K. A., Campbell, R. L., Maughmer, M. D., & Schmitz, S. (2019). Computational investigation of a boundary-layer ingesting propulsion system for the common research model. Journal of Aircraft, 55(3), 1141–1153.CrossRef Blumenthal, B. T., Elmiligui, A. A., Geiselhart, K. A., Campbell, R. L., Maughmer, M. D., & Schmitz, S. (2019). Computational investigation of a boundary-layer ingesting propulsion system for the common research model. Journal of Aircraft, 55(3), 1141–1153.CrossRef
go back to reference Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Bevirt, J., Stoll, A. M., & Gibson, A. R. (2016). Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator. In 16th AIAA aviation technology, integration, and operations conference (p. 3920). Borer, N. K., Patterson, M. D., Viken, J. K., Moore, M. D., Bevirt, J., Stoll, A. M., & Gibson, A. R. (2016). Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator. In 16th AIAA aviation technology, integration, and operations conference (p. 3920).
go back to reference Budziszewski, N., & Friedrichs, J. (2018). Modelling of a boundary layer ingesting propulsor. Energies (Basel), 11(4), 708.CrossRef Budziszewski, N., & Friedrichs, J. (2018). Modelling of a boundary layer ingesting propulsor. Energies (Basel), 11(4), 708.CrossRef
go back to reference Davies, K., Norman, P., Jones, C., Galloway, S., & Husband, M. (2013). A review of turboelectric distributed propulsion technologies for N+ 3 aircraft electrical systems (pp. 1–5). IEEE. Davies, K., Norman, P., Jones, C., Galloway, S., & Husband, M. (2013). A review of turboelectric distributed propulsion technologies for N+ 3 aircraft electrical systems (pp. 1–5). IEEE.
go back to reference El-Salamony, M., & Teperin, L. (2017). 2D numerical investigation of boundary layer ingestion propulsor on Airfoil. In 7th European conference for aeronautics and aerospace sciences, Milan, Italy. El-Salamony, M., & Teperin, L. (2017). 2D numerical investigation of boundary layer ingestion propulsor on Airfoil. In 7th European conference for aeronautics and aerospace sciences, Milan, Italy.
go back to reference Gohardani, A. S., Doulgeris, G., & Singh, R. (2011). Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for all electric commercial aircraft. Progress in Aerospace Sciences, 47(5), 369–391.CrossRef Gohardani, A. S., Doulgeris, G., & Singh, R. (2011). Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for all electric commercial aircraft. Progress in Aerospace Sciences, 47(5), 369–391.CrossRef
go back to reference Gray, J. S., Mader, C. A., Kenway, G. K. W., & Martins, J. R. R. A. (2018). Modeling boundary layer ingestion using a coupled aeropropulsive analysis. Journal of Aircraft, 55(3), 1191–1199.CrossRef Gray, J. S., Mader, C. A., Kenway, G. K. W., & Martins, J. R. R. A. (2018). Modeling boundary layer ingestion using a coupled aeropropulsive analysis. Journal of Aircraft, 55(3), 1191–1199.CrossRef
go back to reference Hall, D. K., Huang, A. C., Uranga, A., Greitzer, E. M., Drela, M., & Sato, S. (2017). Boundary layer ingestion propulsion benefit for transport aircraft. Journal of Propulsion and Power, 33(5), 1118–1129.CrossRef Hall, D. K., Huang, A. C., Uranga, A., Greitzer, E. M., Drela, M., & Sato, S. (2017). Boundary layer ingestion propulsion benefit for transport aircraft. Journal of Propulsion and Power, 33(5), 1118–1129.CrossRef
go back to reference Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design. NASA Glenn Research Center. Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design. NASA Glenn Research Center.
go back to reference Huang, X., Zhao, X., & Huang, J. (2018). A simplified model for predicting the propeller-wing interaction. Aircraft Engineering and Aerospace Technology, 90(1), 196–201.CrossRef Huang, X., Zhao, X., & Huang, J. (2018). A simplified model for predicting the propeller-wing interaction. Aircraft Engineering and Aerospace Technology, 90(1), 196–201.CrossRef
go back to reference Itoh, M., Tamano, S., Yokota, K., & Ninagawa, M. (2005). Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Physics of Fluids (1994), 17(7), 1–9.CrossRefMATH Itoh, M., Tamano, S., Yokota, K., & Ninagawa, M. (2005). Velocity measurement in turbulent boundary layer of drag-reducing surfactant solution. Physics of Fluids (1994), 17(7), 1–9.CrossRefMATH
go back to reference Ko, A., Schetz, J., & Mason, W. (2003). Assessment of the potential advantages of distributed propulsion for aircraft. In XVI international symposium on air breathing engines, Cleveland, Ohio. Ko, A., Schetz, J., & Mason, W. (2003). Assessment of the potential advantages of distributed propulsion for aircraft. In XVI international symposium on air breathing engines, Cleveland, Ohio.
go back to reference Mantič-Lugo, V., Doulgeris, G., & Singh, R. (2013). Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(8), 1215–1232.CrossRef Mantič-Lugo, V., Doulgeris, G., & Singh, R. (2013). Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(8), 1215–1232.CrossRef
go back to reference Plas, A., Crichton, D., Sargeant, M., Hynes, T., Greitzer, E., Hall, C., & Madani, V. (2007, January). Performance of a boundary layer ingesting (BLI) propulsion system. In AIAA 2007–450. 45th AIAA aerospace sciences meeting and exhibit. Plas, A., Crichton, D., Sargeant, M., Hynes, T., Greitzer, E., Hall, C., & Madani, V. (2007, January). Performance of a boundary layer ingesting (BLI) propulsion system. In AIAA 2007–450. 45th AIAA aerospace sciences meeting and exhibit.
go back to reference Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., & Croom, M. A. (2014). NASA Langley distributed propulsion VTOL tiltwing aircraft testing, modeling, simulation, control, and flight test development. In 14th AIAA aviation technology, integration, and operations conference (p. 2999). Rothhaar, P. M., Murphy, P. C., Bacon, B. J., Gregory, I. M., Grauer, J. A., Busan, R. C., & Croom, M. A. (2014). NASA Langley distributed propulsion VTOL tiltwing aircraft testing, modeling, simulation, control, and flight test development. In 14th AIAA aviation technology, integration, and operations conference (p. 2999).
go back to reference Sinnige, T., Stokkermans, T. C. A., Arnhem, N., & Veldhuis, L. L. M. (2019). Aerodynamic performance of a wingtip-mounted tractor propeller configuration in windmilling and energy-harvesting conditions. In AIAA aviation 2019 forum (p. 1624105890). Sinnige, T., Stokkermans, T. C. A., Arnhem, N., & Veldhuis, L. L. M. (2019). Aerodynamic performance of a wingtip-mounted tractor propeller configuration in windmilling and energy-harvesting conditions. In AIAA aviation 2019 forum (p. 1624105890).
go back to reference Stoll, A. M., Bevirt, J., Moore, M. D., Fredericks, W. J., & Borer, N. K. (2014). Drag reduction through distributed electric propulsion. In Aviation technology, integration, and operations conference, 16–20 June 2014, Atlanta, Georgia. Stoll, A. M., Bevirt, J., Moore, M. D., Fredericks, W. J., & Borer, N. K. (2014). Drag reduction through distributed electric propulsion. In Aviation technology, integration, and operations conference, 16–20 June 2014, Atlanta, Georgia.
go back to reference Tiseira Izaguirre, A. O., García-Cuevas González, L. M., Quintero Igeño, P., & Varela Martínez, P. (2021). Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: Fuel consumption improvements. Aerospace Science and Technology, 2021, 107227. Tiseira Izaguirre, A. O., García-Cuevas González, L. M., Quintero Igeño, P., & Varela Martínez, P. (2021). Series-hybridisation, distributed electric propulsion and boundary layer ingestion in long-endurance, small remotely piloted aircraft: Fuel consumption improvements. Aerospace Science and Technology, 2021, 107227.
go back to reference Valencia, E., Alulema, V., Rodriguez, D., Laskaridis, P., & Roumeliotis, I. (2020). Novel fan configuration for distributed propulsion systems with boundary layer ingestion on an hybrid wing body airframe. Thermal Science and Engineering Progress, 18, 100515. ISSN 2451-9049.CrossRef Valencia, E., Alulema, V., Rodriguez, D., Laskaridis, P., & Roumeliotis, I. (2020). Novel fan configuration for distributed propulsion systems with boundary layer ingestion on an hybrid wing body airframe. Thermal Science and Engineering Progress, 18, 100515. ISSN 2451-9049.CrossRef
go back to reference Wang, H., Zhou, Z., Xu, X., & Zhu, X. (2018). Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method. The Aeronautical Journal, 122(1247), 21–41.CrossRef Wang, H., Zhou, Z., Xu, X., & Zhu, X. (2018). Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method. The Aeronautical Journal, 122(1247), 21–41.CrossRef
go back to reference Wang, K., Zhou, Z., Zhu, X., & Xu, X. (2019). Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers. Aerospace Science and Technology, 84, 1–17.CrossRef Wang, K., Zhou, Z., Zhu, X., & Xu, X. (2019). Aerodynamic design of multi-propeller/wing integration at low Reynolds numbers. Aerospace Science and Technology, 84, 1–17.CrossRef
go back to reference Zhang, J., Kang, W., & Yang, L. (2019). Aerodynamic benefits of boundary layer ingestion for distributed propulsion configuration. Aircraft Engineering and Aerospace Technology, 91(10), 1285–1294.CrossRef Zhang, J., Kang, W., & Yang, L. (2019). Aerodynamic benefits of boundary layer ingestion for distributed propulsion configuration. Aircraft Engineering and Aerospace Technology, 91(10), 1285–1294.CrossRef
Metadata
Title
Leading and Trailing Edge Configuration for Distributed Electric Propulsion Systems
Authors
Mithun Eqbal
Matthew Marino
Patrick Farley
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-33118-3_15