Skip to main content
Top

2020 | OriginalPaper | Chapter

Leading Edge Chemical Crystallography Service Provision and Its Impact on Crystallographic Data Science in the Twenty-First Century

Authors : Simon J. Coles, David R. Allan, Christine M. Beavers, Simon J. Teat, Stephen J. W. Holgate, Clare A. Tovee

Published in: 21st Century Challenges in Chemical Crystallography I

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

National facilities provide state-of-the-art crystallographic instrumentation and processes and tend to act as an indicator for the direction of a community in the medium term. There has been a significant step up in terms of instrumentation and approach in the last 10 years which has driven data generation. This has had a significant impact on databases – in turn we observe a substantial change in the use of the Cambridge Structural Database (CSD) from relatively basic search/retrieve to gaining deep understanding about factors that govern the solid state. Databases are now able to drive new science in areas such as crystal engineering. Looking forward, we will see more automated pipelining of the data generation process, and this will require better integration with databases. Databases will provide more predictive power – and this will inform the science/crystallography that should be done.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Clegg W (2000) Synchrotron chemical crystallography. J Chem Soc Dalt Trans:3223–3232 Clegg W (2000) Synchrotron chemical crystallography. J Chem Soc Dalt Trans:3223–3232
3.
go back to reference Katrusiak A (2008) High-pressure crystallography. Acta Crystallogr Sect A Found Crystallogr 64:135–148 Katrusiak A (2008) High-pressure crystallography. Acta Crystallogr Sect A Found Crystallogr 64:135–148
4.
go back to reference Tidey JP, Wong HLS, Schröder M, Blake AJ (2014) Structural chemistry of metal coordination complexes at high pressure. Coord Chem Rev 277–278:187–207 Tidey JP, Wong HLS, Schröder M, Blake AJ (2014) Structural chemistry of metal coordination complexes at high pressure. Coord Chem Rev 277–278:187–207
5.
go back to reference Zhang J-P, Liao P-Q, Zhou H-L, Lin R-B, Chen X-M (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43:5789–5814PubMed Zhang J-P, Liao P-Q, Zhou H-L, Lin R-B, Chen X-M (2014) Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem Soc Rev 43:5789–5814PubMed
6.
go back to reference Hatcher LE, Raithby PR (2014) Dynamic single-crystal diffraction studies using synchrotron radiation. Coord Chem Rev 277–278:69–79 Hatcher LE, Raithby PR (2014) Dynamic single-crystal diffraction studies using synchrotron radiation. Coord Chem Rev 277–278:69–79
7.
go back to reference Barnett SA, Nowell H, Warren MR, Wilcox A, Allan DR (2016) Facilities for small-molecule crystallography at synchrotron sources. Protein Pept Lett 23:211–216PubMed Barnett SA, Nowell H, Warren MR, Wilcox A, Allan DR (2016) Facilities for small-molecule crystallography at synchrotron sources. Protein Pept Lett 23:211–216PubMed
8.
go back to reference Nowell H, Barnett SA, Christensen KE, Teat SJ, Allan DR (2012) I19, the small-molecule single-crystal diffraction beamline at diamond light source. J Synchrotron Radiat 19:435–441PubMed Nowell H, Barnett SA, Christensen KE, Teat SJ, Allan DR (2012) I19, the small-molecule single-crystal diffraction beamline at diamond light source. J Synchrotron Radiat 19:435–441PubMed
9.
go back to reference McCormick LJ, Giordano N, Teat SJ, Beavers CM (2017) Chemical crystallography at the advanced light source. Crystals 7:382 McCormick LJ, Giordano N, Teat SJ, Beavers CM (2017) Chemical crystallography at the advanced light source. Crystals 7:382
10.
go back to reference Hursthouse MB, Coles SJ (2014) The UK national crystallography service; its origins, methods and science. Crystallogr Rev 20:117–154 Hursthouse MB, Coles SJ (2014) The UK national crystallography service; its origins, methods and science. Crystallogr Rev 20:117–154
11.
go back to reference Coles SJ, Gale PA (2012) Changing and challenging times for service crystallography. Chem Sci 3:683–689 Coles SJ, Gale PA (2012) Changing and challenging times for service crystallography. Chem Sci 3:683–689
14.
go back to reference Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179 Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179
15.
go back to reference Taylor R, Wood PA (2019) A million crystal structures: the whole is greater than the sum of its parts. Chem Rev 119:9427–9477PubMed Taylor R, Wood PA (2019) A million crystal structures: the whole is greater than the sum of its parts. Chem Rev 119:9427–9477PubMed
16.
go back to reference Phillips GN (2015) The future of dynamic structural science. Crystallogr Rev 21:310–310 Phillips GN (2015) The future of dynamic structural science. Crystallogr Rev 21:310–310
17.
go back to reference Coles SJ, Hursthouse MB (2004) Focusing optics for molybdenum radiation: a bright laboratory source for small-molecule crystallography. J Appl Crystallogr 37:988–992 Coles SJ, Hursthouse MB (2004) Focusing optics for molybdenum radiation: a bright laboratory source for small-molecule crystallography. J Appl Crystallogr 37:988–992
19.
go back to reference Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483–1485 Hemberg O, Otendal M, Hertz HM (2003) Liquid-metal-jet anode electron-impact x-ray source. Appl Phys Lett 83:1483–1485
20.
go back to reference Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102PubMed Otendal M, Tuohimaa T, Vogt U, Hertz HM (2008) A 9keV electron-impact liquid-gallium-jet x-ray source. Rev Sci Instrum 79:016102PubMed
21.
go back to reference Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area x-ray detectors. Rev Sci Instrum 73:2815–2842 Gruner SM, Tate MW, Eikenberry EF (2002) Charge-coupled device area x-ray detectors. Rev Sci Instrum 73:2815–2842
22.
go back to reference Allé P, Wenger E, Dahaoui S, Schaniel D, Lecomte C (2016) Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality. Phys Scr 91:063001 Allé P, Wenger E, Dahaoui S, Schaniel D, Lecomte C (2016) Comparison of CCD, CMOS and hybrid pixel x-ray detectors: detection principle and data quality. Phys Scr 91:063001
23.
go back to reference Kraft P, Bergamaschi A, Broennimann C et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368–375PubMedPubMedCentral Kraft P, Bergamaschi A, Broennimann C et al (2009) Performance of single-photon-counting PILATUS detector modules. J Synchrotron Radiat 16:368–375PubMedPubMedCentral
26.
go back to reference Thompson AC, Westbrook EM, Lavender WM, Nix JC (2014) A large area CMOS detector for shutterless collection of x-ray diffraction data. J Phys Conf Ser 493:012019 Thompson AC, Westbrook EM, Lavender WM, Nix JC (2014) A large area CMOS detector for shutterless collection of x-ray diffraction data. J Phys Conf Ser 493:012019
27.
go back to reference Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830 Elder FR, Gurewitsch AM, Langmuir RV, Pollock HC (1947) Radiation from electrons in a synchrotron. Phys Rev 71:829–830
28.
go back to reference Robinson AL (2001) X-ray data booklet. In: Hist. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.2 Robinson AL (2001) X-ray data booklet. In: Hist. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.2
29.
go back to reference Kim KJ (2001) X-ray data booklet. In: Charact. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.1 Kim KJ (2001) X-ray data booklet. In: Charact. Synchrotron Radiat. Lawrence Berkeley National Laboratory, p Section 2.1
32.
go back to reference Marks S, Zbasnik J, Byme W et al (2002) ALS superbend magnet performance. IEEE Trans Appl Supercond 12:149–152 Marks S, Zbasnik J, Byme W et al (2002) ALS superbend magnet performance. IEEE Trans Appl Supercond 12:149–152
33.
go back to reference Eriksson M, van der Veen JF, Quitmann C (2014) Diffraction-limited storage rings – a window to the science of tomorrow. J Synchrotron Radiat 21:837–842PubMed Eriksson M, van der Veen JF, Quitmann C (2014) Diffraction-limited storage rings – a window to the science of tomorrow. J Synchrotron Radiat 21:837–842PubMed
34.
go back to reference Raimondi P (2016) ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat News 29:8–15 Raimondi P (2016) ESRF-EBS: the extremely brilliant source project. Synchrotron Radiat News 29:8–15
35.
go back to reference Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M (2018) An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. J Synchrotron Radiat 25:346–353PubMedPubMedCentral Inoue I, Osaka T, Tamasaku K, Ohashi H, Yamazaki H, Goto S, Yabashi M (2018) An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. J Synchrotron Radiat 25:346–353PubMedPubMedCentral
36.
go back to reference Kirkpatrick P, Baez AV (1948) Formation of optical images by X-rays. J Opt Soc Am 38:766PubMed Kirkpatrick P, Baez AV (1948) Formation of optical images by X-rays. J Opt Soc Am 38:766PubMed
37.
go back to reference Helliwell JR (1984) Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Rep Prog Phys 47:1403–1497 Helliwell JR (1984) Synchrotron X-radiation protein crystallography: instrumentation, methods and applications. Rep Prog Phys 47:1403–1497
38.
go back to reference Ballabriga R, Alozy J, Blaj G et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8:C02016 Ballabriga R, Alozy J, Blaj G et al (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8:C02016
40.
go back to reference Graafsma H, Becker J, Gruner SM (2018) Integrating hybrid area detectors for storage ring and free-electron laser applications. In: Synchrotron light sources free. Lasers. Springer, Cham, pp 1–31 Graafsma H, Becker J, Gruner SM (2018) Integrating hybrid area detectors for storage ring and free-electron laser applications. In: Synchrotron light sources free. Lasers. Springer, Cham, pp 1–31
41.
go back to reference Leonarski F, Redford S, Mozzanica A et al (2018) Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 15:799–804PubMed Leonarski F, Redford S, Mozzanica A et al (2018) Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nat Methods 15:799–804PubMed
42.
go back to reference Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn) 5 (OH) 6 (CO 3 ) 2, determined from a microcrystal. Acta Crystallogr Sect B Struct Sci 50:673–676 Harding MM, Kariuki BM, Cernik R, Cressey G (1994) The structure of aurichalcite, (Cu,Zn) 5 (OH) 6 (CO 3 ) 2, determined from a microcrystal. Acta Crystallogr Sect B Struct Sci 50:673–676
43.
go back to reference Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (1997) A new high-flux chemical and materials crystallography station at the SRS daresbury. 1. Design, construction and test results. J Synchrotron Radiat 4:279–286PubMed Cernik RJ, Clegg W, Catlow CRA, Bushnell-Wye G, Flaherty JV, Greaves GN, Burrows I, Taylor DJ, Teat SJ, Hamichi M (1997) A new high-flux chemical and materials crystallography station at the SRS daresbury. 1. Design, construction and test results. J Synchrotron Radiat 4:279–286PubMed
45.
go back to reference Cosier BJ, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Crystallogr 19:105–107 Cosier BJ, Glazer AM (1986) A nitrogen-gas-stream cryostat for general X-ray diffraction studies. J Appl Crystallogr 19:105–107
47.
go back to reference Johnson NR, Waddell PG, Clegg W, Probert MR (2017) Remote access revolution: chemical crystallographers enter a new era at diamond light source beamline I19. Crystals 7:360 Johnson NR, Waddell PG, Clegg W, Probert MR (2017) Remote access revolution: chemical crystallographers enter a new era at diamond light source beamline I19. Crystals 7:360
48.
go back to reference Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192PubMed Delageniere S, Brenchereau P, Launer L et al (2011) ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27:3186–3192PubMed
49.
go back to reference Allan D, Nowell H, Barnett S et al (2017) A novel dual air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at diamond light source. Crystals 7:336 Allan D, Nowell H, Barnett S et al (2017) A novel dual air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at diamond light source. Crystals 7:336
50.
go back to reference Diamond Light Source (2020) DLS data management policy Diamond Light Source (2020) DLS data management policy
51.
52.
53.
go back to reference Christensen J, Horton PN, Bury CS, Dickerson JL, Taberman H, Garman EF, Coles SJ (2019) Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6:703–713PubMedPubMedCentral Christensen J, Horton PN, Bury CS, Dickerson JL, Taberman H, Garman EF, Coles SJ (2019) Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ 6:703–713PubMedPubMedCentral
54.
go back to reference Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. In: Methods Mol Biol. pp 467–489 Garman EF, Weik M (2017) Radiation damage in macromolecular crystallography. In: Methods Mol Biol. pp 467–489
56.
go back to reference Hall SR (1991) The STAR file: a new format for electronic data transfer and archiving. J Chem Inf Model 31:326–333 Hall SR (1991) The STAR file: a new format for electronic data transfer and archiving. J Chem Inf Model 31:326–333
57.
go back to reference Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr Sect A Found Crystallogr 47:655–685 Hall SR, Allen FH, Brown ID (1991) The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr Sect A Found Crystallogr 47:655–685
58.
go back to reference Brown ID, McMahon B (2002) CIF: the computer language of crystallography. Acta Crystallogr Sect B Struct Sci 58:317–324 Brown ID, McMahon B (2002) CIF: the computer language of crystallography. Acta Crystallogr Sect B Struct Sci 58:317–324
59.
go back to reference Bernstein HJ, Bollinger JC, Brown ID, Gražulis S, Hester JR, McMahon B, Spadaccini N, Westbrook JD, Westrip SP (2016) Specification of the crystallographic information file format, version 2.0. J Appl Crystallogr 49:277–284 Bernstein HJ, Bollinger JC, Brown ID, Gražulis S, Hester JR, McMahon B, Spadaccini N, Westbrook JD, Westrip SP (2016) Specification of the crystallographic information file format, version 2.0. J Appl Crystallogr 49:277–284
61.
go back to reference Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13 Spek AL (2003) Single-crystal structure validation with the program PLATON. J Appl Crystallogr 36:7–13
62.
go back to reference Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr 65:148–155 Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D Biol Crystallogr 65:148–155
63.
go back to reference Spek AL (2018) What makes a crystal structure report valid? Inorg Chim Acta 470:232–237 Spek AL (2018) What makes a crystal structure report valid? Inorg Chim Acta 470:232–237
68.
go back to reference Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729PubMedPubMedCentral Gražulis S, Chateigner D, Downs RT et al (2009) Crystallography open database – an open-access collection of crystal structures. J Appl Crystallogr 42:726–729PubMedPubMedCentral
69.
go back to reference Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10:17–22 Hellenbrandt M (2004) The inorganic crystal structure database (ICSD)—present and future. Crystallogr Rev 10:17–22
70.
go back to reference Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1 Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2:S1
71.
go back to reference Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J Chem Soc Dalt Trans:S1 Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Taylor R (1989) Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J Chem Soc Dalt Trans:S1
72.
go back to reference Coles SJ, Frey JG, Hursthouse MB, Light ME, Meacham KE, Marvin DJ, Surridge M (2005) ECSES – examining crystal structures using `e-science’: a demonstrator employing web and grid services to enhance user participation in crystallographic experiments. J Appl Crystallogr 38:819–826 Coles SJ, Frey JG, Hursthouse MB, Light ME, Meacham KE, Marvin DJ, Surridge M (2005) ECSES – examining crystal structures using `e-science’: a demonstrator employing web and grid services to enhance user participation in crystallographic experiments. J Appl Crystallogr 38:819–826
74.
go back to reference Bird C, Coles SJ, Frey JG (2015) The evolution of digital chemistry at Southampton. Mol Inform 34:585–597PubMed Bird C, Coles SJ, Frey JG (2015) The evolution of digital chemistry at Southampton. Mol Inform 34:585–597PubMed
76.
go back to reference Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018PubMedPubMedCentral Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018PubMedPubMedCentral
78.
go back to reference Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD (2017) Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science cloud. Inf Serv Use 37:49–56 Mons B, Neylon C, Velterop J, Dumontier M, da Silva Santos LOB, Wilkinson MD (2017) Cloudy, increasingly FAIR; revisiting the FAIR data guiding principles for the European Open Science cloud. Inf Serv Use 37:49–56
79.
go back to reference Coles SJ, Frey JG, Willighagen EL, Chalk SJ (2019) Taking FAIR on the ChIN: the chemistry implementation network. Data Intell:131–138 Coles SJ, Frey JG, Willighagen EL, Chalk SJ (2019) Taking FAIR on the ChIN: the chemistry implementation network. Data Intell:131–138
84.
go back to reference Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, IUCr (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H, IUCr (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341
85.
go back to reference Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr 36:1487–1487 Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) CRYSTALS version 12: software for guided crystal structure analysis. J Appl Crystallogr 36:1487–1487
86.
go back to reference Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980–980 Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980–980
87.
go back to reference Kennard O (1996) From private data to public knowledge. Portland Press, London Kennard O (1996) From private data to public knowledge. Portland Press, London
88.
go back to reference Marsh RE, Schomaker V (1979) Some incorrect space groups in inorganic chemistry, volume 16. Inorg Chem 18:2331–2336 Marsh RE, Schomaker V (1979) Some incorrect space groups in inorganic chemistry, volume 16. Inorg Chem 18:2331–2336
89.
go back to reference Henling LM, Marsh RE (2014) Some more space-group corrections. Acta Crystallogr Sect C Struct Chem 70:834–836 Henling LM, Marsh RE (2014) Some more space-group corrections. Acta Crystallogr Sect C Struct Chem 70:834–836
90.
go back to reference Fronczek FR (2018) The inverse Marsh error. Acta Crystallogr Sect A Found Adv 74:a60–a60 Fronczek FR (2018) The inverse Marsh error. Acta Crystallogr Sect A Found Adv 74:a60–a60
91.
92.
go back to reference Silver MA, Cary SK, Johnson JA, Baumbach RE, Arico AA, Luckey M, Urban M, Wang JC, Polinski MJ, Chemey A, Liu G, Chen K-W, Van Cleve SM, Marsh ML, Eaton TM, van de Burgt LJ, Gray AL, Hobart DE, Hanson K, Maron L, Gendron F, Autschbach J, Speldrich M, Kögerler P, Yang P, Braley J, Albrecht-Schmitt TE (2016) Characterization of berkelium (III) dipicolinate and borate compounds in solution and the solid state. Science 353:888. https://doi.org/10.1126/science.aaf3762CrossRef Silver MA, Cary SK, Johnson JA, Baumbach RE, Arico AA, Luckey M, Urban M, Wang JC, Polinski MJ, Chemey A, Liu G, Chen K-W, Van Cleve SM, Marsh ML, Eaton TM, van de Burgt LJ, Gray AL, Hobart DE, Hanson K, Maron L, Gendron F, Autschbach J, Speldrich M, Kögerler P, Yang P, Braley J, Albrecht-Schmitt TE (2016) Characterization of berkelium (III) dipicolinate and borate compounds in solution and the solid state. Science 353:888. https://​doi.​org/​10.​1126/​science.​aaf3762CrossRef
93.
go back to reference Apostolidis C, Schimmelpfennig B, Magnani N, Lindqvist-Reis P, Walter O, Sykora R, Morgenstern A, Colineau E, Caciuffo R, Klenze R, Haire RG, Rebizant J, Bruchertseifer F, Fanghänel T (2010) [An(H2O)9](CF3SO3)3 (An=U-Cm, Cf): exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew Chem Int Ed 49:6343. https://doi.org/10.1002/anie.201001077CrossRef Apostolidis C, Schimmelpfennig B, Magnani N, Lindqvist-Reis P, Walter O, Sykora R, Morgenstern A, Colineau E, Caciuffo R, Klenze R, Haire RG, Rebizant J, Bruchertseifer F, Fanghänel T (2010) [An(H2O)9](CF3SO3)3 (An=U-Cm, Cf): exploring their stability, structural chemistry, and magnetic behavior by experiment and theory. Angew Chem Int Ed 49:6343. https://​doi.​org/​10.​1002/​anie.​201001077CrossRef
94.
go back to reference Polinski MJ, Garner III EB, Maurice R, Planas N, Stritzinger JT, Gannon Parker T, Cross JN, Green TD, Alekseev EV, Van Cleve SM, Depmeier W, Gagliardi L, Shatruk M, Knappenberger KL, Liu G, Skanthakumar S, Soderholm L, Dixon DA, Albrecht-Schmitt TE (2014) Unusual structure, bonding and properties in a Californium borate. Nat Chem 6:387. https://doi.org/10.1038/nchem.1896CrossRefPubMed Polinski MJ, Garner III EB, Maurice R, Planas N, Stritzinger JT, Gannon Parker T, Cross JN, Green TD, Alekseev EV, Van Cleve SM, Depmeier W, Gagliardi L, Shatruk M, Knappenberger KL, Liu G, Skanthakumar S, Soderholm L, Dixon DA, Albrecht-Schmitt TE (2014) Unusual structure, bonding and properties in a Californium borate. Nat Chem 6:387. https://​doi.​org/​10.​1038/​nchem.​1896CrossRefPubMed
95.
go back to reference Cary SK, Vasiliu M, Baumbach RE, Stritzinger JT, Green TD, Diefenbach K, Cross JN, Knappenberger KL, Liu G, Silver MA, DePrince AE, Polinski MJ, Van Cleve SM, House JH, Kikugawa N, Gallagher A, Arico AA, Dixon DA, Albrecht-Schmitt TE (2015) Emergence of californium as the second transitional element in the actinide series. Nat Commun 6:6827. https://doi.org/10.1038/ncomms7827CrossRefPubMedPubMedCentral Cary SK, Vasiliu M, Baumbach RE, Stritzinger JT, Green TD, Diefenbach K, Cross JN, Knappenberger KL, Liu G, Silver MA, DePrince AE, Polinski MJ, Van Cleve SM, House JH, Kikugawa N, Gallagher A, Arico AA, Dixon DA, Albrecht-Schmitt TE (2015) Emergence of californium as the second transitional element in the actinide series. Nat Commun 6:6827. https://​doi.​org/​10.​1038/​ncomms7827CrossRefPubMedPubMedCentral
97.
go back to reference Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625 Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D (2017) Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater 29:2618–2625
98.
go back to reference Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-) 341:1230444 Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science (80-) 341:1230444
99.
go back to reference Tovee C, Ward S, Sarjeant A, Bruno I (2018) Reporting crystal structure data: recent insights. Abstr Pap Am Chem Soc 256 Tovee C, Ward S, Sarjeant A, Bruno I (2018) Reporting crystal structure data: recent insights. Abstr Pap Am Chem Soc 256
100.
go back to reference Van Der Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr Sect A Found Crystallogr 46:194–201 Van Der Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Crystallogr Sect A Found Crystallogr 46:194–201
101.
go back to reference Allen FH, Bellard S, Brice MD et al (1979) The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:2331–2339 Allen FH, Bellard S, Brice MD et al (1979) The Cambridge crystallographic data centre: computer-based search, retrieval, analysis and display of information. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 35:2331–2339
102.
go back to reference Johnson CK (1965) ORTEP: a fortran thermal-ellipsoid plot program for crystal structure illustrations Johnson CK (1965) ORTEP: a fortran thermal-ellipsoid plot program for crystal structure illustrations
103.
go back to reference Crystal Impact, Putz H, Brandenburg K. Diamond – crystal and molecular structure visualization Crystal Impact, Putz H, Brandenburg K. Diamond – crystal and molecular structure visualization
104.
106.
go back to reference Watkin DJ, Prout CK, Pearce LJ (1996) Cameron Watkin DJ, Prout CK, Pearce LJ (1996) Cameron
107.
108.
go back to reference Barbour LJ (2001) X-seed — a software tool for supramolecular crystallography. J Supramol Chem 1:189–191 Barbour LJ (2001) X-seed — a software tool for supramolecular crystallography. J Supramol Chem 1:189–191
109.
go back to reference Motherwell WDS, Shields GP, Allen FH (1999) Visualization and characterization of non-covalent networks in molecular crystals: automated assignment of graph-set descriptors for asymmetric molecules. Acta Crystallogr Sect B Struct Sci 55:1044–1056 Motherwell WDS, Shields GP, Allen FH (1999) Visualization and characterization of non-covalent networks in molecular crystals: automated assignment of graph-set descriptors for asymmetric molecules. Acta Crystallogr Sect B Struct Sci 55:1044–1056
110.
go back to reference Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr Sect B Struct Sci 58:389–397 Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr Sect B Struct Sci 58:389–397
111.
go back to reference Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr Sect B Struct Sci 57:815–827 Taylor R, Macrae CF (2001) Rules governing the crystal packing of mono- and dialcohols. Acta Crystallogr Sect B Struct Sci 57:815–827
112.
go back to reference CCDC (1994) Vista – a program for the analysis and display of data retrieved from the CSD CCDC (1994) Vista – a program for the analysis and display of data retrieved from the CSD
113.
go back to reference Sykes RA, McCabe P, Allen FH, Battle GM, Bruno IJ, Wood PA (2011) New software for statistical analysis of Cambridge Structural Database data. J Appl Crystallogr 44:882–886PubMedPubMedCentral Sykes RA, McCabe P, Allen FH, Battle GM, Bruno IJ, Wood PA (2011) New software for statistical analysis of Cambridge Structural Database data. J Appl Crystallogr 44:882–886PubMedPubMedCentral
114.
go back to reference Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J, IUCr (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457 Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J, IUCr (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457
115.
go back to reference Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) The development of versions 3 and 4 of the Cambridge Structural Database system. J Chem Inf Comput Sci 31:187–204 Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) The development of versions 3 and 4 of the Cambridge Structural Database system. J Chem Inf Comput Sci 31:187–204
116.
go back to reference Stumpfe D, Bajorath J (2011) Similarity searching. Wiley Interdiscip Rev Comput Mol Sci 1:260–282 Stumpfe D, Bajorath J (2011) Similarity searching. Wiley Interdiscip Rev Comput Mol Sci 1:260–282
117.
go back to reference Cambridge Crystallographic Data Centre CellCheckCSD – The Cambridge Crystallographic Data Centre (CCDC) Cambridge Crystallographic Data Centre CellCheckCSD – The Cambridge Crystallographic Data Centre (CCDC)
118.
go back to reference White FJ, Gál Z, Griffin A, Skarzynski T, Meyer M, Prochniak G, Wood PA, Thomas IR (2011) A new interface to the Cambridge Structural Database (CSD) in CrysAlisPro. Acta Crystallogr Sect A Found Crystallogr 67:C404–C404 White FJ, Gál Z, Griffin A, Skarzynski T, Meyer M, Prochniak G, Wood PA, Thomas IR (2011) A new interface to the Cambridge Structural Database (CSD) in CrysAlisPro. Acta Crystallogr Sect A Found Crystallogr 67:C404–C404
119.
go back to reference Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the Cambridge Structural Database. J Appl Crystallogr 37:331–334 Chisholm JA, Motherwell S (2004) A new algorithm for performing three-dimensional searches of the Cambridge Structural Database. J Appl Crystallogr 37:331–334
120.
go back to reference Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470 Macrae CF, Bruno IJ, Chisholm JA et al (2008) Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470
121.
go back to reference Gelbrich T, Hursthouse MB (2005) A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals. CrystEngComm 7:324 Gelbrich T, Hursthouse MB (2005) A versatile procedure for the identification, description and quantification of structural similarity in molecular crystals. CrystEngComm 7:324
122.
go back to reference Chisholm JA, Motherwell S (2005) COMPACK : a program for identifying crystal structure similarity using distances. J Appl Crystallogr 38:228–231 Chisholm JA, Motherwell S (2005) COMPACK : a program for identifying crystal structure similarity using distances. J Appl Crystallogr 38:228–231
123.
go back to reference Rohlíček J, Skořepová E, Babor M, Čejka J, IUCr (2016) CrystalCMP: an easy-to-use tool for fast comparison of molecular packing. J Appl Crystallogr 49:2172–2183 Rohlíček J, Skořepová E, Babor M, Čejka J, IUCr (2016) CrystalCMP: an easy-to-use tool for fast comparison of molecular packing. J Appl Crystallogr 49:2172–2183
124.
go back to reference Salbego PRSS, Bender CR, Hörner M, Zanatta N, Frizzo CP, Bonacorso HG, Martins MAPP (2018) Insights on the similarity of supramolecular structures in organic crystals using quantitative indexes. ACS Omega 3:2569–2578PubMedPubMedCentral Salbego PRSS, Bender CR, Hörner M, Zanatta N, Frizzo CP, Bonacorso HG, Martins MAPP (2018) Insights on the similarity of supramolecular structures in organic crystals using quantitative indexes. ACS Omega 3:2569–2578PubMedPubMedCentral
125.
go back to reference Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) WebCSD : the online portal to the Cambridge Structural Database. J Appl Crystallogr 43:362–366PubMedPubMedCentral Thomas IR, Bruno IJ, Cole JC, Macrae CF, Pidcock E, Wood PA (2010) WebCSD : the online portal to the Cambridge Structural Database. J Appl Crystallogr 43:362–366PubMedPubMedCentral
140.
go back to reference Orpen AG, Brammer L, Allen FH, Watson DG, Taylor R (2006) Typical interatomic distances: organometallic compounds and coordination complexes of the d – and f -block metals. Int Tables Crystallogr C:812–896 Orpen AG, Brammer L, Allen FH, Watson DG, Taylor R (2006) Typical interatomic distances: organometallic compounds and coordination complexes of the d – and f -block metals. Int Tables Crystallogr C:812–896
141.
go back to reference Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2006) Typical interactomic distances: organic compounds. Int Tables Crystallogr C:790–811 Allen FH, Watson DG, Brammer L, Orpen AG, Taylor R (2006) Typical interactomic distances: organic compounds. Int Tables Crystallogr C:790–811
142.
go back to reference Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144PubMed Bruno IJ, Cole JC, Kessler M et al (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44:2133–2144PubMed
143.
go back to reference Cottrell SJ, Olsson TSG, Taylor R, Cole JC, Liebeschuetz JW (2012) Validating and understanding ring conformations using small molecule crystallographic data. J Chem Inf Model 52:956–962PubMed Cottrell SJ, Olsson TSG, Taylor R, Cole JC, Liebeschuetz JW (2012) Validating and understanding ring conformations using small molecule crystallographic data. J Chem Inf Model 52:956–962PubMed
144.
go back to reference Cole JC, Korb O, McCabe P, Read MG, Taylor R (2018) Knowledge-based conformer generation using the Cambridge Structural Database. J Chem Inf Model 58:615–629PubMed Cole JC, Korb O, McCabe P, Read MG, Taylor R (2018) Knowledge-based conformer generation using the Cambridge Structural Database. J Chem Inf Model 58:615–629PubMed
145.
go back to reference Taylor R, Cole J, Korb O, McCabe P (2014) Knowledge-based libraries for predicting the geometric preferences of druglike molecules. J Chem Inf Model 54:2500–2514PubMed Taylor R, Cole J, Korb O, McCabe P (2014) Knowledge-based libraries for predicting the geometric preferences of druglike molecules. J Chem Inf Model 54:2500–2514PubMed
146.
go back to reference Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11:525–537PubMed Bruno IJ, Cole JC, Lommerse JPM, Rowland RS, Taylor R, Verdonk ML (1997) IsoStar: a library of information about nonbonded interactions. J Comput Aided Mol Des 11:525–537PubMed
147.
go back to reference Taylor R (2016) It Isn’t, it is: the C-H···X (X = O, N, F, Cl) interaction really is significant in crystal packing. Cryst Growth Des 16:4165–4168 Taylor R (2016) It Isn’t, it is: the C-H···X (X = O, N, F, Cl) interaction really is significant in crystal packing. Cryst Growth Des 16:4165–4168
148.
go back to reference Bauzá A, Seth SK, Frontera A (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds. Coord Chem Rev 384:107–125 Bauzá A, Seth SK, Frontera A (2019) Tetrel bonding interactions at work: impact on tin and lead coordination compounds. Coord Chem Rev 384:107–125
149.
go back to reference Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chemie – Int Ed 54:7340–7343 Bauzá A, Frontera A (2015) Aerogen bonding interaction: a new supramolecular force? Angew Chemie – Int Ed 54:7340–7343
150.
go back to reference Mikherdov AS, Kinzhalov MA, Novikov AS, Boyarskiy VP, Boyarskaya IA, Avdontceva MS, Kukushkin VY (2018) Ligation-enhanced π-hole···π interactions involving isocyanides: effect of π-hole···π noncovalent bonding on conformational stabilization of acyclic diaminocarbene ligands. Inorg Chem 57:6722–6733PubMed Mikherdov AS, Kinzhalov MA, Novikov AS, Boyarskiy VP, Boyarskaya IA, Avdontceva MS, Kukushkin VY (2018) Ligation-enhanced π-hole···π interactions involving isocyanides: effect of π-hole···π noncovalent bonding on conformational stabilization of acyclic diaminocarbene ligands. Inorg Chem 57:6722–6733PubMed
151.
go back to reference Rissanen K (2017) Crystallography of encapsulated molecules. Chem Soc Rev 46:2638–2648PubMed Rissanen K (2017) Crystallography of encapsulated molecules. Chem Soc Rev 46:2638–2648PubMed
152.
go back to reference Wood PA, Olsson TSG, Cole JC, Cottrell SJ, Feeder N, Galek PTA, Groom CR, Pidcock E (2013) Evaluation of molecular crystal structures using full interaction maps. CrystEngComm 15:65–72 Wood PA, Olsson TSG, Cole JC, Cottrell SJ, Feeder N, Galek PTA, Groom CR, Pidcock E (2013) Evaluation of molecular crystal structures using full interaction maps. CrystEngComm 15:65–72
153.
go back to reference Feeder N, Pidcock E, Reilly AM, Sadiq G, Doherty CL, Back KR, Meenan P, Docherty R (2015) The integration of solid-form informatics into solid-form selection. J Pharm Pharmacol 67:857–868PubMed Feeder N, Pidcock E, Reilly AM, Sadiq G, Doherty CL, Back KR, Meenan P, Docherty R (2015) The integration of solid-form informatics into solid-form selection. J Pharm Pharmacol 67:857–868PubMed
154.
go back to reference Galek PTA, Pidcock E, Wood PA, Feeder N, Allen FH (2016) Navigating the solid form landscape with structural informatics. In: Computational pharmaceutical solid state chemistry. Wiley, Hoboken, pp 15–35 Galek PTA, Pidcock E, Wood PA, Feeder N, Allen FH (2016) Navigating the solid form landscape with structural informatics. In: Computational pharmaceutical solid state chemistry. Wiley, Hoboken, pp 15–35
155.
go back to reference Galek PTA, Fábián L, Motherwell WDS, Allen FH, Feeder N (2007) Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr Sect B Struct Sci 63:768–782 Galek PTA, Fábián L, Motherwell WDS, Allen FH, Feeder N (2007) Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr Sect B Struct Sci 63:768–782
156.
go back to reference Bruno IJ, Shields GP, Taylor R (2011) Deducing chemical structure from crystallographically determined atomic coordinates. Acta Crystallogr Sect B Struct Sci 67:333–349 Bruno IJ, Shields GP, Taylor R (2011) Deducing chemical structure from crystallographically determined atomic coordinates. Acta Crystallogr Sect B Struct Sci 67:333–349
159.
go back to reference Cole JC, Giangreco I, Groom CR (2017) Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis. Acta Crystallogr Sect D Struct Biol 73:234–239 Cole JC, Giangreco I, Groom CR (2017) Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis. Acta Crystallogr Sect D Struct Biol 73:234–239
160.
go back to reference Groom CR, Cole JC (2017) The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery. Acta Crystallogr Sect D Struct Biol 73:240–245 Groom CR, Cole JC (2017) The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery. Acta Crystallogr Sect D Struct Biol 73:240–245
161.
go back to reference Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108PubMed Verdonk ML, Cole JC, Taylor R (1999) SuperStar: a knowledge-based approach for identifying interaction sites in proteins. J Mol Biol 289:1093–1108PubMed
162.
go back to reference Hendlich M (1998) Databases for protein–ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 54:1178–1182 Hendlich M (1998) Databases for protein–ligand complexes. Acta Crystallogr Sect D Biol Crystallogr 54:1178–1182
163.
go back to reference Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M (2001) Use of relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. Biopolymers 61:99–110PubMed Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M (2001) Use of relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. Biopolymers 61:99–110PubMed
164.
go back to reference Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. J Mol Biol 326:607–620PubMed Hendlich M, Bergner A, Günther J, Klebe G (2003) Relibase: design and development of a database for comprehensive analysis of protein–ligand interactions. J Mol Biol 326:607–620PubMed
165.
go back to reference Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using relibase. J Mol Biol 326:621–636PubMed Günther J, Bergner A, Hendlich M, Klebe G (2003) Utilising structural knowledge in drug design strategies: applications using relibase. J Mol Biol 326:621–636PubMed
166.
go back to reference Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMed Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748PubMed
167.
go back to reference Sun H, Jin Z, Yang C, Akkermans RLC, Robertson SH, Spenley NA, Miller S, Todd SM (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22:47PubMed Sun H, Jin Z, Yang C, Akkermans RLC, Robertson SH, Spenley NA, Miller S, Todd SM (2016) COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model 22:47PubMed
168.
go back to reference Vermaas JV, Petridis L, Ralph J, Crowley MF, Beckham GT (2019) Systematic parameterization of lignin for the CHARMM force field. Green Chem 21:109–122 Vermaas JV, Petridis L, Ralph J, Crowley MF, Beckham GT (2019) Systematic parameterization of lignin for the CHARMM force field. Green Chem 21:109–122
169.
go back to reference Schärfer C, Schulz-Gasch T, Hert J, Heinzerling L, Schulz B, Inhester T, Stahl M, Rarey M (2013) Inside cover: CONFECT: conformations from an expert collection of torsion patterns (ChemMedChem 10/2013). ChemMedChem 8:1574–1574 Schärfer C, Schulz-Gasch T, Hert J, Heinzerling L, Schulz B, Inhester T, Stahl M, Rarey M (2013) Inside cover: CONFECT: conformations from an expert collection of torsion patterns (ChemMedChem 10/2013). ChemMedChem 8:1574–1574
170.
go back to reference Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47PubMedPubMedCentral Kothiwale S, Mendenhall JL, Meiler J (2015) BCL::Conf: small molecule conformational sampling using a knowledge based rotamer library. J Cheminform 7:47PubMedPubMedCentral
171.
go back to reference Korb O, Kuhn B, Hert J, Taylor N, Cole J, Groom C, Stahl M (2016) Interactive and versatile navigation of structural databases. J Med Chem 59:4257–4266PubMed Korb O, Kuhn B, Hert J, Taylor N, Cole J, Groom C, Stahl M (2016) Interactive and versatile navigation of structural databases. J Med Chem 59:4257–4266PubMed
172.
go back to reference Groom CR, Olsson TSG, Liebeschuetz JW, Bardwell DA, Bruno IJ, Allen FH (2012) Mining the Cambridge Structural Database for bioisosteres. In: Bioisosteres medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 75–101 Groom CR, Olsson TSG, Liebeschuetz JW, Bardwell DA, Bruno IJ, Allen FH (2012) Mining the Cambridge Structural Database for bioisosteres. In: Bioisosteres medicinal chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 75–101
174.
go back to reference Galek PTA, Pidcock E, Wood PA, Bruno IJ, Groom CR (2012) One in half a million: a solid form informatics study of a pharmaceutical crystal structure. CrystEngComm 14:2391–2403 Galek PTA, Pidcock E, Wood PA, Bruno IJ, Groom CR (2012) One in half a million: a solid form informatics study of a pharmaceutical crystal structure. CrystEngComm 14:2391–2403
175.
go back to reference Takieddin K, Khimyak YZ, Fábián L (2016) Prediction of hydrate and solvate formation using statistical models. Cryst Growth Des 16:70–81 Takieddin K, Khimyak YZ, Fábián L (2016) Prediction of hydrate and solvate formation using statistical models. Cryst Growth Des 16:70–81
176.
go back to reference Xin D, Gonnella NC, He X, Horspool K (2019) Solvate prediction for pharmaceutical organic molecules with machine learning. Cryst Growth Des 19:1903–1911 Xin D, Gonnella NC, He X, Horspool K (2019) Solvate prediction for pharmaceutical organic molecules with machine learning. Cryst Growth Des 19:1903–1911
177.
go back to reference Rama Krishna G, Ukrainczyk M, Zeglinski J, Rasmuson ÅC (2018) Prediction of solid state properties of cocrystals using artificial neural network modeling. Cryst Growth Des 18:133–144 Rama Krishna G, Ukrainczyk M, Zeglinski J, Rasmuson ÅC (2018) Prediction of solid state properties of cocrystals using artificial neural network modeling. Cryst Growth Des 18:133–144
178.
go back to reference Bryant MJ, Maloney AGP, Sykes RA (2018) Predicting mechanical properties of crystalline materials through topological analysis. CrystEngComm 20:2698–2704 Bryant MJ, Maloney AGP, Sykes RA (2018) Predicting mechanical properties of crystalline materials through topological analysis. CrystEngComm 20:2698–2704
179.
go back to reference Wang C, Sun CC (2019) Computational techniques for predicting mechanical properties of organic crystals: a systematic evaluation. Mol Pharm 16:1732–1741PubMed Wang C, Sun CC (2019) Computational techniques for predicting mechanical properties of organic crystals: a systematic evaluation. Mol Pharm 16:1732–1741PubMed
180.
go back to reference Pudasaini N, Upadhyay PP, Parker CR, Hagen SU, Bond AD, Rantanen J (2017) Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org Process Res Dev 21:571–577 Pudasaini N, Upadhyay PP, Parker CR, Hagen SU, Bond AD, Rantanen J (2017) Downstream processability of crystal habit-modified active pharmaceutical ingredient. Org Process Res Dev 21:571–577
181.
go back to reference Turner TD, Hatcher LE, Wilson CC, Roberts KJ (2019) Habit modification of the active pharmaceutical ingredient lovastatin through a predictive solvent selection approach. J Pharm Sci 108:1779–1787PubMed Turner TD, Hatcher LE, Wilson CC, Roberts KJ (2019) Habit modification of the active pharmaceutical ingredient lovastatin through a predictive solvent selection approach. J Pharm Sci 108:1779–1787PubMed
182.
go back to reference Hooper D, Clarke FC, Docherty R, Mitchell J, Snowden MJ (2017) Effects of crystal habit on the sticking propensity of ibuprofen—a case study. Int J Pharm 531:266–275PubMed Hooper D, Clarke FC, Docherty R, Mitchell J, Snowden MJ (2017) Effects of crystal habit on the sticking propensity of ibuprofen—a case study. Int J Pharm 531:266–275PubMed
183.
go back to reference Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26:6185–6192 Chung YG, Camp J, Haranczyk M, Sikora BJ, Bury W, Krungleviciute V, Yildirim T, Farha OK, Sholl DS, Snurr RQ (2014) Computation-ready, experimental metal–organic frameworks: a tool to enable high-throughput screening of nanoporous crystals. Chem Mater 26:6185–6192
184.
go back to reference First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater 165:32–39 First EL, Floudas CA (2013) MOFomics: computational pore characterization of metal-organic frameworks. Microporous Mesoporous Mater 165:32–39
185.
go back to reference Watanabe T, Sholl DS (2012) Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28:14114–14128PubMed Watanabe T, Sholl DS (2012) Accelerating applications of metal–organic frameworks for gas adsorption and separation by computational screening of materials. Langmuir 28:14114–14128PubMed
186.
go back to reference Barthel S, Alexandrov EV, Proserpio DM, Smit B (2018) Distinguishing metal–organic frameworks. Cryst Growth Des 18:1738–1747PubMedPubMedCentral Barthel S, Alexandrov EV, Proserpio DM, Smit B (2018) Distinguishing metal–organic frameworks. Cryst Growth Des 18:1738–1747PubMedPubMedCentral
187.
188.
go back to reference Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236 Coudert F-X, Fuchs AH (2016) Computational characterization and prediction of metal–organic framework properties. Coord Chem Rev 307:211–236
189.
go back to reference Goldsmith J, Wong-Foy AG, Cafarella MJ, Siegel DJ (2013) Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem Mater 25:3373–3382 Goldsmith J, Wong-Foy AG, Cafarella MJ, Siegel DJ (2013) Theoretical limits of hydrogen storage in metal–organic frameworks: opportunities and trade-offs. Chem Mater 25:3373–3382
190.
go back to reference Moghadam PZ, Islamoglu T, Goswami S, Exley J, Fantham M, Kaminski CF, Snurr RQ, Farha OK, Fairen-Jimenez D (2018) Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat Commun 9:1378PubMedPubMedCentral Moghadam PZ, Islamoglu T, Goswami S, Exley J, Fantham M, Kaminski CF, Snurr RQ, Farha OK, Fairen-Jimenez D (2018) Computer-aided discovery of a metal–organic framework with superior oxygen uptake. Nat Commun 9:1378PubMedPubMedCentral
191.
go back to reference Altintas C, Erucar I, Keskin S (2018) High-throughput computational screening of the metal organic framework database for CH 4/H 2 separations. ACS Appl Mater Interf 10:3668–3679 Altintas C, Erucar I, Keskin S (2018) High-throughput computational screening of the metal organic framework database for CH 4/H 2 separations. ACS Appl Mater Interf 10:3668–3679
192.
go back to reference Azar ANV, Velioglu S, Keskin S (2019) Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H 2 /N 2 separations. ACS Sustain Chem Eng 7:9525–9536PubMedPubMedCentral Azar ANV, Velioglu S, Keskin S (2019) Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H 2 /N 2 separations. ACS Sustain Chem Eng 7:9525–9536PubMedPubMedCentral
193.
go back to reference Inokuma Y, Matsumura K, Yoshioka S, Fujita M (2017) Finding a new crystalline sponge from a crystallographic database. Chem – An Asian J 12:208–211 Inokuma Y, Matsumura K, Yoshioka S, Fujita M (2017) Finding a new crystalline sponge from a crystallographic database. Chem – An Asian J 12:208–211
194.
go back to reference Zhang L, Chen Z, Su J, Li J (2019) Data mining new energy materials from structure databases. Renew Sust Energ Rev 107:554–567 Zhang L, Chen Z, Su J, Li J (2019) Data mining new energy materials from structure databases. Renew Sust Energ Rev 107:554–567
195.
go back to reference Shi P-P, Tang Y-Y, Li P-F, Liao W-Q, Wang Z-X, Ye Q, Xiong R-G (2016) Symmetry breaking in molecular ferroelectrics. Chem Soc Rev 45:3811–3827PubMed Shi P-P, Tang Y-Y, Li P-F, Liao W-Q, Wang Z-X, Ye Q, Xiong R-G (2016) Symmetry breaking in molecular ferroelectrics. Chem Soc Rev 45:3811–3827PubMed
196.
go back to reference Cole JM, Kreiling S (2002) Exploiting structure/property relationships in organic non-linear optical materials: developing strategies to realize the potential of TCNQ derivatives. CrystEngComm 4:232–238 Cole JM, Kreiling S (2002) Exploiting structure/property relationships in organic non-linear optical materials: developing strategies to realize the potential of TCNQ derivatives. CrystEngComm 4:232–238
197.
go back to reference Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M (2017) A simple approach for predicting the spin state of homoleptic Fe(II) Tris-diimine complexes. J Am Chem Soc 139:6437–6447PubMed Phan H, Hrudka JJ, Igimbayeva D, Lawson Daku LM, Shatruk M (2017) A simple approach for predicting the spin state of homoleptic Fe(II) Tris-diimine complexes. J Am Chem Soc 139:6437–6447PubMed
198.
go back to reference Schober C, Reuter K, Oberhofer H (2016) Virtual screening for high carrier mobility in organic semiconductors. J Phys Chem Lett 7:3973–3977PubMed Schober C, Reuter K, Oberhofer H (2016) Virtual screening for high carrier mobility in organic semiconductors. J Phys Chem Lett 7:3973–3977PubMed
199.
go back to reference Kunkel C, Schober C, Oberhofer H, Reuter K (2019) Knowledge discovery through chemical space networks: the case of organic electronics. J Mol Model 25:87PubMed Kunkel C, Schober C, Oberhofer H, Reuter K (2019) Knowledge discovery through chemical space networks: the case of organic electronics. J Mol Model 25:87PubMed
200.
go back to reference Cole JM, Low KS, Ozoe H, Stathi P, Kitamura C, Kurata H, Rudolf P, Kawase T (2014) Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Phys Chem Chem Phys 16:26684–26690PubMed Cole JM, Low KS, Ozoe H, Stathi P, Kitamura C, Kurata H, Rudolf P, Kawase T (2014) Data mining with molecular design rules identifies new class of dyes for dye-sensitised solar cells. Phys Chem Chem Phys 16:26684–26690PubMed
201.
go back to reference Adalder TK, Dastidar P (2014) Crystal engineering approach toward selective formation of an asymmetric supramolecular synthon in primary ammonium monocarboxylate (PAM) salts and their gelation studies. Cryst Growth Des 14:2254–2262 Adalder TK, Dastidar P (2014) Crystal engineering approach toward selective formation of an asymmetric supramolecular synthon in primary ammonium monocarboxylate (PAM) salts and their gelation studies. Cryst Growth Des 14:2254–2262
202.
go back to reference Veits GK, Carter KK, Cox SJ, McNeil AJ (2016) Developing a gel-based sensor using crystal morphology prediction. J Am Chem Soc 138:12228–12233PubMed Veits GK, Carter KK, Cox SJ, McNeil AJ (2016) Developing a gel-based sensor using crystal morphology prediction. J Am Chem Soc 138:12228–12233PubMed
203.
go back to reference Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8:9059PubMedPubMedCentral Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW (2018) Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 8:9059PubMedPubMedCentral
204.
go back to reference Wicker JGPP, Cooper RI (2015) Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 17:1927–1934 Wicker JGPP, Cooper RI (2015) Will it crystallise? Predicting crystallinity of molecular materials. CrystEngComm 17:1927–1934
207.
go back to reference Lommerse JPM, Motherwell WDS, Ammon HL et al (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr Sect B Struct Sci 56:697–714 Lommerse JPM, Motherwell WDS, Ammon HL et al (2000) A test of crystal structure prediction of small organic molecules. Acta Crystallogr Sect B Struct Sci 56:697–714
208.
go back to reference Reilly AM, Cooper RI, Adjiman CS et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459 Reilly AM, Cooper RI, Adjiman CS et al (2016) Report on the sixth blind test of organic crystal structure prediction methods. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:439–459
209.
go back to reference Cole JC, Groom CR, Read MG, Giangreco I, McCabe P, Reilly AM, Shields GP (2016) Generation of crystal structures using known crystal structures as analogues. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:530–541 Cole JC, Groom CR, Read MG, Giangreco I, McCabe P, Reilly AM, Shields GP (2016) Generation of crystal structures using known crystal structures as analogues. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:530–541
210.
go back to reference Musil F, De S, Yang J, Campbell JE, Day GM, Ceriotti M (2018) Machine learning for the structure–energy–property landscapes of molecular crystals. Chem Sci 9:1289–1300PubMed Musil F, De S, Yang J, Campbell JE, Day GM, Ceriotti M (2018) Machine learning for the structure–energy–property landscapes of molecular crystals. Chem Sci 9:1289–1300PubMed
211.
go back to reference Bryant MJ, Black SN, Blade H, Docherty R, Maloney AGP, Taylor SC (2019) The CSD drug subset: the changing chemistry and crystallography of small molecule pharmaceuticals. J Pharm Sci:1–8 Bryant MJ, Black SN, Blade H, Docherty R, Maloney AGP, Taylor SC (2019) The CSD drug subset: the changing chemistry and crystallography of small molecule pharmaceuticals. J Pharm Sci:1–8
212.
go back to reference Fábián L (2009) Cambridge Structural Database analysis of molecular complementarity in cocrystals. Cryst Growth Des 9:1436–1443 Fábián L (2009) Cambridge Structural Database analysis of molecular complementarity in cocrystals. Cryst Growth Des 9:1436–1443
213.
go back to reference Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A (2013) EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr 46:1231–1235 Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R, Corriero N, Falcicchio A (2013) EXPO2013: a kit of tools for phasing crystal structures from powder data. J Appl Crystallogr 46:1231–1235
214.
go back to reference Feng ZJ, Dong C (2007) GEST: a program for structure determination from powder diffraction data using a genetic algorithm. J Appl Crystallogr 40:583–588 Feng ZJ, Dong C (2007) GEST: a program for structure determination from powder diffraction data using a genetic algorithm. J Appl Crystallogr 40:583–588
215.
go back to reference Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549 Toby BH, Von Dreele RB (2013) GSAS-II : the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46:544–549
216.
go back to reference Coelho AA (2018) TOPAS and TOPAS-academic : an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218 Coelho AA (2018) TOPAS and TOPAS-academic : an optimization program integrating computer algebra and crystallographic objects written in C++. J Appl Crystallogr 51:210–218
217.
go back to reference Schärfer C, Schulz-Gasch T, Ehrlich H-C, Guba W, Rarey M, Stahl M (2013) Torsion angle preferences in druglike chemical space: a comprehensive guide. J Med Chem 56:2016–2028PubMed Schärfer C, Schulz-Gasch T, Ehrlich H-C, Guba W, Rarey M, Stahl M (2013) Torsion angle preferences in druglike chemical space: a comprehensive guide. J Med Chem 56:2016–2028PubMed
218.
go back to reference David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC, IUCr (2006) DASH : a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915 David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC, IUCr (2006) DASH : a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915
219.
go back to reference Kabova EA, Cole JC, Korb O, López-Ibáñez M, Williams AC, Shankland K (2017) Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J Appl Crystallogr 50:1411–1420 Kabova EA, Cole JC, Korb O, López-Ibáñez M, Williams AC, Shankland K (2017) Improved performance of crystal structure solution from powder diffraction data through parameter tuning of a simulated annealing algorithm. J Appl Crystallogr 50:1411–1420
220.
go back to reference Kabova EA, Cole JC, Korb O, Williams AC, Shankland K (2017) Improved crystal structure solution from powder diffraction data by the use of conformational information. J Appl Crystallogr 50:1421–1427 Kabova EA, Cole JC, Korb O, Williams AC, Shankland K (2017) Improved crystal structure solution from powder diffraction data by the use of conformational information. J Appl Crystallogr 50:1421–1427
221.
go back to reference Cole JC, Kabova EA, Shankland K (2014) Utilizing organic and organometallic structural data in powder diffraction. Powder Diffract 29:S19–S30 Cole JC, Kabova EA, Shankland K (2014) Utilizing organic and organometallic structural data in powder diffraction. Powder Diffract 29:S19–S30
222.
go back to reference Florence AJ, Bardin J, Johnston B, Shankland N, Griffin TAN, Shankland K (2009) Structure determination from powder data: mogul and CASTEP. Zeitschrift für Krist 2009:215–220 Florence AJ, Bardin J, Johnston B, Shankland N, Griffin TAN, Shankland K (2009) Structure determination from powder data: mogul and CASTEP. Zeitschrift für Krist 2009:215–220
223.
go back to reference Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr Sect C Cryst Struct Commun 69:1251–1259 Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr Sect C Cryst Struct Commun 69:1251–1259
224.
go back to reference Florence AJ, Shankland N, Shankland K et al (2005) Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH : the state of the art and challenges. J Appl Crystallogr 38:249–259 Florence AJ, Shankland N, Shankland K et al (2005) Solving molecular crystal structures from laboratory X-ray powder diffraction data with DASH : the state of the art and challenges. J Appl Crystallogr 38:249–259
225.
go back to reference Bruker AXS Inc (2012) SAINT. Madison, Wisconsin Bruker AXS Inc (2012) SAINT. Madison, Wisconsin
226.
go back to reference Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657PubMedPubMedCentral Reymond J-L, Awale M (2012) Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 3:649–657PubMedPubMedCentral
228.
go back to reference Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research Hey T, Tansley S, Tolle K (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research
Metadata
Title
Leading Edge Chemical Crystallography Service Provision and Its Impact on Crystallographic Data Science in the Twenty-First Century
Authors
Simon J. Coles
David R. Allan
Christine M. Beavers
Simon J. Teat
Stephen J. W. Holgate
Clare A. Tovee
Copyright Year
2020
DOI
https://doi.org/10.1007/430_2020_63

Premium Partners