Skip to main content
Top

2015 | OriginalPaper | Chapter

Leakage-Resilient Non-malleable Codes

Authors : Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, Maciej Obremski

Published in: Theory of Cryptography

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

A recent trend in cryptography is to construct cryptosystems that are secure against physical attacks. Such attacks are usually divided into two classes: the

leakage

attacks in which the adversary obtains some information about the internal state of the machine, and the

tampering

attacks where the adversary can modify this state. One of the popular tools used to provide tamper-resistance are the

non-malleable codes

introduced by Dziembowski, Pietrzak and Wichs (ICS 2010). These codes can be defined in several variants, but arguably the most natural of them are the information-theoretically secure codes in the

k-split-state model

(the most desired case being

k

 = 2).

Such codes were constucted recently by Aggarwal et al. (STOC 2014). Unfortunately, unlike the earlier, computationally-secure constructions (Liu and Lysyanskaya, CRYPTO 2012) these codes are not known to be resilient to leakage. This is unsatisfactory, since in practice one always aims at providing resilience against

both

leakage and tampering (especially considering tampering without leakage is problematic, since the leakage attacks are usually much easier to perform than the tampering attacks).

In this paper we close this gap by showing a non-malleable code in the 2-split state model that is secure against leaking almost a 1/12-th fraction of the bits from the codeword (in the bounded-leakage model). This is achieved via a generic transformation that takes as input any non-malleable code (

Enc,Dec

) in the 2-split state model, and constructs out of it another non-malleable code (

Enc

’,

Dec

’) in the 2-split state model that is additionally leakage-resilient. The rate of (

Enc

’,

Dec

’) is linear in the rate of (

Enc, Dec

). Our construction requires that

Dec

is

symmetric

, i.e., for all

x

,

y

, it is the case that

Dec

(

x

,

y

) =

Dec

(

y

,

x

), but this property holds for all currently known information-theoretically secure codes in the 2-split state model. In particular, we can apply our transformation to the code of Aggarwal et al., obtaining the first leakage-resilient code secure in the split-state model. Our transformation can be applied to other codes (in particular it can also be applied to a recent code of Aggarwal, Dodis, Kazana and Obremski constructed in the work subsequent to this one).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Metadata
Title
Leakage-Resilient Non-malleable Codes
Authors
Divesh Aggarwal
Stefan Dziembowski
Tomasz Kazana
Maciej Obremski
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46494-6_17

Premium Partner