Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-10-2020 | Regular paper | Issue 2/2021

Knowledge and Information Systems 2/2021

Learning credible DNNs via incorporating prior knowledge and model local explanation

Journal:
Knowledge and Information Systems > Issue 2/2021
Authors:
Mengnan Du, Ninghao Liu, Fan Yang, Xia Hu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recent studies have shown that state-of-the-art DNNs are not always credible, despite their impressive performance on the hold-out test set of a variety of tasks. These models tend to exploit dataset shortcuts to make predictions, rather than learn the underlying task. The non-credibility could lead to low generalization, adversarial vulnerability, as well as algorithmic discrimination of the DNN models. In this paper, we propose CREX in order to develop more credible DNNs. The high-level idea of CREX is to encourage DNN models to focus more on evidences that actually matter for the task at hand and to avoid overfitting to data-dependent shortcuts. Specifically, in the DNN training process, CREX directly regularizes the local explanation with expert rationales, i.e., a subset of features highlighted by domain experts as justifications for predictions, to enforce the alignment between local explanations and rationales. Even when rationales are not available, CREX still could be useful by requiring the generated explanations to be sparse. In addition, CREX is widely applicable to different network architectures, including CNN, LSTM and attention model. Experimental results on several text classification datasets demonstrate that CREX could increase the credibility of DNNs. Comprehensive analysis further shows three meaningful improvements of CREX: (1) it significantly increases DNN accuracy on new and previously unseen data beyond test set, (2) it enhances fairness of DNNs in terms of equality of opportunity metric and reduce models’ discrimination toward certain demographic group, and (3) it promotes the robustness of DNN models with respect to adversarial attack. These experimental results highlight the advantages of the increased credibility by CREX.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2021

Knowledge and Information Systems 2/2021 Go to the issue

Premium Partner

    Image Credits