Skip to main content
Top

2023 | OriginalPaper | Chapter

Learning Factors for TIMSS Math Performance Evidenced Through Machine Learning in the UAE

Authors : Ali Nadaf, Samantha Monroe, Sarath Chandran, Xin Miao

Published in: Artificial Intelligence in Education Technologies: New Development and Innovative Practices

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Understanding how the UAE K12 education system performs with data-driven evidence is key to inform better policy making to support UAE vision to upskill human capital growth for its economic transformation. In this study, we investigate the potential of using machine learning techniques to understand key learning factors contributing to UAE student math performance on the TIMSS 2019 assessment. Due to the fact that learning factors co-exist and interact with one another, we explore the SHapley Additive exPlanations (SHAP) approach to explain the complexity of the model. The results highlight the importance and contributions of each learning factor and uncover the relationships between the learning factors. Understanding key learning factors and identifying evidence-based intervention opportunities will help policymakers with informed education intervention designs to improve student mathematics learning, in order to improve UAE student TIMSS math performance over the long run.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Retrieved from the TIMSS 2019 International Database Downloads, https://​timss2019.​org/​international-database/​.
 
Literature
2.
go back to reference Hanushek, E.A., Woessmann, L.: How much do educational outcomes matter in OECD countries? Econ. Policy 26(67), 427–491 (2011)CrossRef Hanushek, E.A., Woessmann, L.: How much do educational outcomes matter in OECD countries? Econ. Policy 26(67), 427–491 (2011)CrossRef
3.
go back to reference Ibourk, A.: Determinants of educational achievement in Morocco: a micro-econometric analysis applied to the TIMSS study. Int. Educ. Stud. 6(12), 25–36 (2013)CrossRef Ibourk, A.: Determinants of educational achievement in Morocco: a micro-econometric analysis applied to the TIMSS study. Int. Educ. Stud. 6(12), 25–36 (2013)CrossRef
4.
go back to reference Sandoval-Hernández, A., Białowolski, P.: Factors and conditions promoting academic resilience: a TIMSS-based analysis of five Asian education systems. Asia Pac. Educ. Rev. 17(3), 511–520 (2016)CrossRef Sandoval-Hernández, A., Białowolski, P.: Factors and conditions promoting academic resilience: a TIMSS-based analysis of five Asian education systems. Asia Pac. Educ. Rev. 17(3), 511–520 (2016)CrossRef
5.
go back to reference Sulku, S.N., Abdioglu, Z.: Public and private school distinction, regional development differences, and other factors influencing the success of primary school students in Turkey. Educ. Sci.: Theory Pract. 15(2), 419–31 (2015) Sulku, S.N., Abdioglu, Z.: Public and private school distinction, regional development differences, and other factors influencing the success of primary school students in Turkey. Educ. Sci.: Theory Pract. 15(2), 419–31 (2015)
6.
go back to reference Suri, T., Boozer, M.A., Ranis, G., Stewart, F.: Paths to success: the relationship between human development and economic growth. World Dev. 39(4), 506–522 (2011)CrossRef Suri, T., Boozer, M.A., Ranis, G., Stewart, F.: Paths to success: the relationship between human development and economic growth. World Dev. 39(4), 506–522 (2011)CrossRef
7.
go back to reference Drent, M., Meelissen, M.R.M., van der Kleij, F.M.: The contribution of TIMSS to the link between school and classroom factors and student achievement. J. Curric. Stud. 45(2), 198–224 (2013) Drent, M., Meelissen, M.R.M., van der Kleij, F.M.: The contribution of TIMSS to the link between school and classroom factors and student achievement. J. Curric. Stud. 45(2), 198–224 (2013)
8.
go back to reference Bofah, E.A., Hannula, M.S.: TIMSS data in an African comparative perspective: investigating the factors influencing achievement in mathematics and their psychometric properties. Large-Scale Assess. Educ. 3(1), 1–36 (2015) Bofah, E.A., Hannula, M.S.: TIMSS data in an African comparative perspective: investigating the factors influencing achievement in mathematics and their psychometric properties. Large-Scale Assess. Educ. 3(1), 1–36 (2015)
9.
go back to reference Filiz, E., Enes, Öz.: Educational data mining methods for TIMSS 2015 mathematics success: Turkey case. Sigma J. Eng. Nat. Sci. 38(2), 963–77 (2020) Filiz, E., Enes, Öz.: Educational data mining methods for TIMSS 2015 mathematics success: Turkey case. Sigma J. Eng. Nat. Sci. 38(2), 963–77 (2020)
10.
go back to reference Kwak, Y.: An analysis of the Korean science education environment for 20 years of TIMSS. J. Korean Earth Sci. Soc. 39(4), 378–387 (2018)CrossRef Kwak, Y.: An analysis of the Korean science education environment for 20 years of TIMSS. J. Korean Earth Sci. Soc. 39(4), 378–387 (2018)CrossRef
11.
go back to reference Cardoso, A.P., Ferreira, M., Abrantes, J.L., Seabra, C., Costa, C.: Personal and pedagogical interaction factors as determinants of academic achievement. Procedia-Soc. Behav. Sci. 29, 1596–1605 (2011) Cardoso, A.P., Ferreira, M., Abrantes, J.L., Seabra, C., Costa, C.: Personal and pedagogical interaction factors as determinants of academic achievement. Procedia-Soc. Behav. Sci. 29, 1596–1605 (2011)
12.
go back to reference DeFreitas, K., Bernard, M.: Comparative performance analysis of clustering techniques in educational data mining. IADIS Int. J. Comput. Sci. Inf. Syst. 10(2) (2015) DeFreitas, K., Bernard, M.: Comparative performance analysis of clustering techniques in educational data mining. IADIS Int. J. Comput. Sci. Inf. Syst. 10(2) (2015)
13.
go back to reference Martinez Abad, F., Chaparro Caso López, A.A.: Data-mining techniques in detecting factors linked to academic achievement. School Eff. School Improv. 28(1), 39–55 (2017) Martinez Abad, F., Chaparro Caso López, A.A.: Data-mining techniques in detecting factors linked to academic achievement. School Eff. School Improv. 28(1), 39–55 (2017)
16.
go back to reference Baradwaj, B.K., Pal, S.: Mining Educational Data to Analyze Students’ Performance (2012). ArXiv:1201.3417 Baradwaj, B.K., Pal, S.: Mining Educational Data to Analyze Students’ Performance (2012). ArXiv:1201.3417
17.
go back to reference Ifenthaler, D., Yau, J.-K.: Utilizing learning analytics to support study success in higher education: a systematic review. Educ. Tech. Res. Dev. 68(4), 1961–1990 (2020)CrossRef Ifenthaler, D., Yau, J.-K.: Utilizing learning analytics to support study success in higher education: a systematic review. Educ. Tech. Res. Dev. 68(4), 1961–1990 (2020)CrossRef
18.
go back to reference Kiray, S.A., Gok, B., Selman Bozkir, A.: Identifying the factors affecting science and mathematics achievement using data mining methods. J. Educ. Sci. Environ. Health 1(1), 28–48 (2015) Kiray, S.A., Gok, B., Selman Bozkir, A.: Identifying the factors affecting science and mathematics achievement using data mining methods. J. Educ. Sci. Environ. Health 1(1), 28–48 (2015)
19.
go back to reference Lee, J., Shute, V.J.: Personal and social-contextual factors in K–12 academic performance: an integrative perspective on student learning. Educ. Psychol. 45(3), 185–202 (2010)CrossRef Lee, J., Shute, V.J.: Personal and social-contextual factors in K–12 academic performance: an integrative perspective on student learning. Educ. Psychol. 45(3), 185–202 (2010)CrossRef
20.
go back to reference Akessa, G.M., Dhufera, A.G.: Factors that influences students’ academic performance: a case of Rift Valley University, Jimma, Ethiopia. J. Educ. Pract. 6(22), 55–63 (2015) Akessa, G.M., Dhufera, A.G.: Factors that influences students’ academic performance: a case of Rift Valley University, Jimma, Ethiopia. J. Educ. Pract. 6(22), 55–63 (2015)
21.
go back to reference Kabakchieva, D.: Predicting student performance by using data mining methods for classification. Cybern. Inf. Technol. 13(1), 61–72 (2013)MathSciNet Kabakchieva, D.: Predicting student performance by using data mining methods for classification. Cybern. Inf. Technol. 13(1), 61–72 (2013)MathSciNet
22.
go back to reference Lau, E.T., Sun, L., Yang, Q.: Modeling, prediction and classification of student academic performance using artificial neural networks. SN Appl. Sci. 1(9), 1–10 (2019) Lau, E.T., Sun, L., Yang, Q.: Modeling, prediction and classification of student academic performance using artificial neural networks. SN Appl. Sci. 1(9), 1–10 (2019)
23.
go back to reference Liem, G.A.D., Martin, A.J., Porter, A.L., Colmar, S.: Sociocultural antecedents of academic motivation and achievement: role of values and achievement motives in achievement goals and academic performance. Asian J. Soc. Psychol. 15(1), 1–13 (2012) Liem, G.A.D., Martin, A.J., Porter, A.L., Colmar, S.: Sociocultural antecedents of academic motivation and achievement: role of values and achievement motives in achievement goals and academic performance. Asian J. Soc. Psychol. 15(1), 1–13 (2012)
24.
go back to reference Schumacher, P., Olinsky, A., Quinn, J., Smith, R.: A comparison of logistic regression, neural networks, and classification trees predicting success of actuarial students. J. Educ. Bus. 85(5), 258–263 (2010)CrossRef Schumacher, P., Olinsky, A., Quinn, J., Smith, R.: A comparison of logistic regression, neural networks, and classification trees predicting success of actuarial students. J. Educ. Bus. 85(5), 258–263 (2010)CrossRef
26.
go back to reference De Witte, K., Kortelainen, M.: What explains the performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables. Appl. Econ. 45(17), 2401–2412 (2013) De Witte, K., Kortelainen, M.: What explains the performance of students in a heterogeneous environment? Conditional efficiency estimation with continuous and discrete environmental variables. Appl. Econ. 45(17), 2401–2412 (2013)
27.
go back to reference Nath, S.R.: Factors influencing primary students’ learning achievement in Bangladesh. Res. Educ. 88(1), 50–63 (2012)CrossRef Nath, S.R.: Factors influencing primary students’ learning achievement in Bangladesh. Res. Educ. 88(1), 50–63 (2012)CrossRef
28.
go back to reference Mohtar, L.E., Halim, L., Samsudin, M.A., Ismail, M.E.: Non-cognitive factors influencing science achievement in Malaysia and Japan: an analysis of TIMSS 2015. EURASIA J. Math. Sci. Technol. Educ. 15(4), 1697 (2019) Mohtar, L.E., Halim, L., Samsudin, M.A., Ismail, M.E.: Non-cognitive factors influencing science achievement in Malaysia and Japan: an analysis of TIMSS 2015. EURASIA J. Math. Sci. Technol. Educ. 15(4), 1697 (2019)
29.
go back to reference Pérez, P.M., Castejón Costa, J.-L., Corbi, R.G.: An explanatory model of academic achievement based on aptitudes, goal orientations, self-concept and learning strategies. Span. J. Psychol. 15(1), 48–60 (2012) Pérez, P.M., Castejón Costa, J.-L., Corbi, R.G.: An explanatory model of academic achievement based on aptitudes, goal orientations, self-concept and learning strategies. Span. J. Psychol. 15(1), 48–60 (2012)
34.
go back to reference Lundberg, S., Lee, S.-I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017) Lundberg, S., Lee, S.-I.: A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017)
35.
go back to reference Lundberg, S.M., Erion, G.G., Lee, S.-I.: Consistent Individualized Feature Attribution for Tree Ensembles (2019). ArXiv:180203888 Cs Stat Lundberg, S.M., Erion, G.G., Lee, S.-I.: Consistent Individualized Feature Attribution for Tree Ensembles (2019). ArXiv:180203888 Cs Stat
38.
go back to reference Martin, M.O., von Davier, M., Mullis, I.V.: Methods and Procedures: TIMSS 2019 Technical Report. International Association for the Evaluation of Educational Achievement (2020) Martin, M.O., von Davier, M., Mullis, I.V.: Methods and Procedures: TIMSS 2019 Technical Report. International Association for the Evaluation of Educational Achievement (2020)
42.
go back to reference OECD: Early learning matters, the international early learning and child well-being study (2018) OECD: Early learning matters, the international early learning and child well-being study (2018)
44.
go back to reference City, E.A., Elmore, R.F., Fiarman, S.E., Teitel, L.: A Network Approach to Improving Teaching and Learning. Harvard Education Press, Cambridge (2009) City, E.A., Elmore, R.F., Fiarman, S.E., Teitel, L.: A Network Approach to Improving Teaching and Learning. Harvard Education Press, Cambridge (2009)
45.
go back to reference McCombs, B.L.: The role of the self-system in self-regulated learning. Contemp. Educ. Psychol. 11, 314–332 (1986)CrossRef McCombs, B.L.: The role of the self-system in self-regulated learning. Contemp. Educ. Psychol. 11, 314–332 (1986)CrossRef
Metadata
Title
Learning Factors for TIMSS Math Performance Evidenced Through Machine Learning in the UAE
Authors
Ali Nadaf
Samantha Monroe
Sarath Chandran
Xin Miao
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-8040-4_4

Premium Partner