Skip to main content
Top
Published in:

27-06-2024

Learning from Failure: Towards Developing a Disease Diagnosis Assistant That Also Learns from Unsuccessful Diagnoses

Authors: Abhisek Tiwari, Swarna S, Sriparna Saha, Pushpak Bhattacharyya, Minakshi Dhar, Sarbajeet Tiwari

Published in: Cognitive Computation | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, automatic disease diagnosis has gained immense popularity in research and industry communities. Humans learn a task through both successful and unsuccessful attempts in real life, and physicians are not different. When doctors fail to diagnose disease correctly, they re-assess the extracted symptoms and re-diagnose the patient by inspecting a few more symptoms guided by their previous experience and current context. Motivated by the experience gained from failure assessment, we propose a novel end-to-end automatic disease diagnosis dialogue system called Failure Assessment incorporated Symptom Investigation and Disease Diagnosis (FA-SIDD) Assistant. The proposed FA-SIDD model includes a knowledge-guided, incorrect disease projection-aware failure assessment module that analyzes unsuccessful diagnosis attempts and reinforces the assessment for further investigation and re-diagnosis. We formulate a novel Markov decision process for the proposed failure assessment, incorporating symptom investigation and disease diagnosis frameworks, and optimize the policy using deep reinforcement learning. The proposed model has outperformed several baselines and the existing symptom investigation and diagnosis methods by a significant margin (1–3%) in all evaluation metrics (including human evaluation). The improvements over the multiple datasets and across multiple algorithms firmly establish the efficacy of learning gained from unsuccessful diagnoses. The work is the first attempt that investigate the importance of learning gained from unsuccessful diagnoses. The developed assistant learns diagnosis task more efficiently than traditional assistants and shows robust behavior. Furthermore, the code is available at https://​github.​com/​AbhisekTiwari/​FA-SIDA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Division has been done as per the International Classification of Disease (ICD-10-CM) https://​www.​cdc.​gov/​nchs/​icd/​
 
Literature
1.
go back to reference Rasmussen K, Belisario JM, Wark PA, Molina JA, Loong SL, Cotic Z, Papachristou N, Riboli–Sasco E, Car LT, Musulanov EM, et al. Offline elearning for undergraduates in health professions: a systematic review of the impact on knowledge, skills, attitudes and satisfaction. J Glob Health 2014:4(1). Rasmussen K, Belisario JM, Wark PA, Molina JA, Loong SL, Cotic Z, Papachristou N, Riboli–Sasco E, Car LT, Musulanov EM, et al. Offline elearning for undergraduates in health professions: a systematic review of the impact on knowledge, skills, attitudes and satisfaction. J Glob Health 2014:4(1).
2.
go back to reference Ramakrishnan N, Vijayaraghavan BKT, Venkataraman R. Breaking barriers to reach farther: A call for urgent action on tele-icu services. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2020;24(6):393.CrossRef Ramakrishnan N, Vijayaraghavan BKT, Venkataraman R. Breaking barriers to reach farther: A call for urgent action on tele-icu services. Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine. 2020;24(6):393.CrossRef
3.
go back to reference Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2022; pp 1–28. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2022; pp 1–28.
4.
go back to reference Semigran HL, Linder JA, Gidengil C, Mehrotra A. Evaluation of symptom checkers for self diagnosis and triage: audit study. BMJ. 2015:351. Semigran HL, Linder JA, Gidengil C, Mehrotra A. Evaluation of symptom checkers for self diagnosis and triage: audit study. BMJ. 2015:351.
5.
go back to reference Wei Z, Liu Q, Peng B, Tou H, Chen T, Huang X-J, Wong K-F, Dai X. Task-oriented dialogue system for automatic diagnosis. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018; pp. 201–207. Wei Z, Liu Q, Peng B, Tou H, Chen T, Huang X-J, Wong K-F, Dai X. Task-oriented dialogue system for automatic diagnosis. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018; pp. 201–207.
6.
go back to reference Kao H-C, Tang K-F, Chang E. Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32. Kao H-C, Tang K-F, Chang E. Context-aware symptom checking for disease diagnosis using hierarchical reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32.
7.
go back to reference Liao K, Liu Q, Wei Z, Peng B, Chen Q, Sun W, Huang X. Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning. 2020. arXiv preprint arXiv:2004.14254. Liao K, Liu Q, Wei Z, Peng B, Chen Q, Sun W, Huang X. Task-oriented dialogue system for automatic disease diagnosis via hierarchical reinforcement learning. 2020. arXiv preprint arXiv:​2004.​14254.
8.
go back to reference Millwood S. Developing a platform for learning from mistakes: changing the culture of patient safety amongst junior doctors. BMJ Open Quality. 2014;3(1):203658–2114. Millwood S. Developing a platform for learning from mistakes: changing the culture of patient safety amongst junior doctors. BMJ Open Quality. 2014;3(1):203658–2114.
9.
go back to reference Tang K-F, Kao H-C, Chou C-N, Chang EY. Inquire and diagnose: Neural symptom checking ensemble using deep reinforcement learning. In: NIPS Workshop on Deep Reinforcement Learning. 2016. Tang K-F, Kao H-C, Chou C-N, Chang EY. Inquire and diagnose: Neural symptom checking ensemble using deep reinforcement learning. In: NIPS Workshop on Deep Reinforcement Learning. 2016.
10.
go back to reference Peng Y-S, Tang K-F, Lin H-T, Chang E. Refuel: Exploring sparse features in deep reinforcement learning for fast disease diagnosis. Adv Neural Inf Process Syst. 2018;31:7322–31. Peng Y-S, Tang K-F, Lin H-T, Chang E. Refuel: Exploring sparse features in deep reinforcement learning for fast disease diagnosis. Adv Neural Inf Process Syst. 2018;31:7322–31.
11.
go back to reference Lin S, Zhou P, Liang X, Tang J, Zhao R, Chen Z, Lin L. Graph-evolving meta-learning for low-resource medical dialogue generation. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021; pp. 13362–13370. AAAI Press. Lin S, Zhou P, Liang X, Tang J, Zhao R, Chen Z, Lin L. Graph-evolving meta-learning for low-resource medical dialogue generation. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021; pp. 13362–13370. AAAI Press.
12.
go back to reference Naseem U, Khushi M, Dunn AG, Kim J. K-pathvqa: Knowledge-aware multimodal representation for pathology visual question answering. IEEE J Biomed Health Inform. 2023. Naseem U, Khushi M, Dunn AG, Kim J. K-pathvqa: Knowledge-aware multimodal representation for pathology visual question answering. IEEE J Biomed Health Inform. 2023.
13.
go back to reference Lu H, Uddin S. A weighted patient network-based framework for predicting chronic diseases using graph neural networks. Sci Rep. 2021;11(1):1–12.CrossRef Lu H, Uddin S. A weighted patient network-based framework for predicting chronic diseases using graph neural networks. Sci Rep. 2021;11(1):1–12.CrossRef
14.
go back to reference Dong W, Wozniak M, Wu J, Li W, Bai Z. De-noising aggregation of graph neural networks by using principal component analysis. IEEE Trans Industr Inform. 2022. Dong W, Wozniak M, Wu J, Li W, Bai Z. De-noising aggregation of graph neural networks by using principal component analysis. IEEE Trans Industr Inform. 2022.
15.
go back to reference Dong W, Wu J, Zhang X, Bai Z, Wang P, Woźniak M. Improving performance and efficiency of graph neural networks by injective aggregation. Knowl-Based Syst. 2022;254: 109616.CrossRef Dong W, Wu J, Zhang X, Bai Z, Wang P, Woźniak M. Improving performance and efficiency of graph neural networks by injective aggregation. Knowl-Based Syst. 2022;254: 109616.CrossRef
16.
go back to reference Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease prediction via graph neural networks. IEEE J Biomed Health Inform. 2020;25(3):818–26.CrossRef Sun Z, Yin H, Chen H, Chen T, Cui L, Yang F. Disease prediction via graph neural networks. IEEE J Biomed Health Inform. 2020;25(3):818–26.CrossRef
17.
go back to reference Bessadok A, Mahjoub MA, Rekik I. Graph neural networks in network neuroscience. IEEE Trans Pattern Anal Mach Intell. 2022;45(5):5833–48.CrossRef Bessadok A, Mahjoub MA, Rekik I. Graph neural networks in network neuroscience. IEEE Trans Pattern Anal Mach Intell. 2022;45(5):5833–48.CrossRef
18.
go back to reference Mccombe N, Ding X, Prasad G, Gillespie P, Finn DP, Todd S, Mcclean PL, Wong-Lin K. Alzheimer’s disease assessments optimized for diagnostic accuracy and administration time. IEEE J Transl Eng Health Med. 2022;10:1–9.CrossRef Mccombe N, Ding X, Prasad G, Gillespie P, Finn DP, Todd S, Mcclean PL, Wong-Lin K. Alzheimer’s disease assessments optimized for diagnostic accuracy and administration time. IEEE J Transl Eng Health Med. 2022;10:1–9.CrossRef
19.
go back to reference Uddin S, Wang S, Lu H, Khan A, Hajati F, Khushi M. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst Appl. 2022;205: 117761.CrossRef Uddin S, Wang S, Lu H, Khan A, Hajati F, Khushi M. Comorbidity and multimorbidity prediction of major chronic diseases using machine learning and network analytics. Expert Syst Appl. 2022;205: 117761.CrossRef
20.
go back to reference Caruccio L, Cirillo S, Polese G, Solimando G, Sundaramurthy S, Tortora G. Can chatgpt provide intelligent diagnoses? a comparative study between predictive models and chatgpt to define a new medical diagnostic bot. Expert Syst Appl. 2024;235: 121186.CrossRef Caruccio L, Cirillo S, Polese G, Solimando G, Sundaramurthy S, Tortora G. Can chatgpt provide intelligent diagnoses? a comparative study between predictive models and chatgpt to define a new medical diagnostic bot. Expert Syst Appl. 2024;235: 121186.CrossRef
21.
go back to reference Xu L, Zhou Q, Gong K, Liang X, Tang J, Lin L. End-to-end knowledge-routed relational dialogue system for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:7346–7353. Xu L, Zhou Q, Gong K, Liang X, Tang J, Lin L. End-to-end knowledge-routed relational dialogue system for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:7346–7353.
22.
go back to reference Dietterich TG. Hierarchical reinforcement learning with the maxq value function decomposition. J Artif Intell Res. 2000;13:227–303.MathSciNetCrossRef Dietterich TG. Hierarchical reinforcement learning with the maxq value function decomposition. J Artif Intell Res. 2000;13:227–303.MathSciNetCrossRef
23.
go back to reference Chen W, Zhong C, Peng J, Wei Z. Dxformer: a decoupled automatic diagnostic system based on decoder-encoder transformer with dense symptom representations. Bioinformatics. 2023;39(1):744.CrossRef Chen W, Zhong C, Peng J, Wei Z. Dxformer: a decoupled automatic diagnostic system based on decoder-encoder transformer with dense symptom representations. Bioinformatics. 2023;39(1):744.CrossRef
24.
go back to reference Levin E, Pieraccini R, Eckert W. Using markov decision process for learning dialogue strategies. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). 1998;1:201–204. IEEE. Levin E, Pieraccini R, Eckert W. Using markov decision process for learning dialogue strategies. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181). 1998;1:201–204. IEEE.
25.
go back to reference Gu Y-K, Zhang J, Shen Y-J, Fan C-J. Fault tree analysis method based on probabilistic model checking and discrete time markov chain. J Ind Prod Eng. 2019;36(3):146–53. Gu Y-K, Zhang J, Shen Y-J, Fan C-J. Fault tree analysis method based on probabilistic model checking and discrete time markov chain. J Ind Prod Eng. 2019;36(3):146–53.
26.
go back to reference Barto AG, Mahadevan S. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems. 2003;13(1):41–77. Barto AG, Mahadevan S. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems. 2003;13(1):41–77.
27.
go back to reference Budzianowski P, Ultes S, Su P-H, Mrkšić N, Wen T-H, Casanueva I, Barahona LMR, Gasic M. Sub-domain modelling for dialogue management with hierarchical reinforcement learning. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. 2017; pp. 86–92. Budzianowski P, Ultes S, Su P-H, Mrkšić N, Wen T-H, Casanueva I, Barahona LMR, Gasic M. Sub-domain modelling for dialogue management with hierarchical reinforcement learning. In: Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. 2017; pp. 86–92.
28.
go back to reference Peng B, Li X, Li L, Gao J, Celikyilmaz A, Lee S, Wong K-F. Composite task-completion dialogue policy learning via hierarchical deep reinforcement learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017; pp. 2231–2240. Peng B, Li X, Li L, Gao J, Celikyilmaz A, Lee S, Wong K-F. Composite task-completion dialogue policy learning via hierarchical deep reinforcement learning. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017; pp. 2231–2240.
29.
go back to reference Liu J, Pan F, Luo L. Gochat: Goal-oriented chatbots with hierarchical reinforcement learning. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020; pp. 1793–1796. Liu J, Pan F, Luo L. Gochat: Goal-oriented chatbots with hierarchical reinforcement learning. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020; pp. 1793–1796.
31.
go back to reference Tesauro G, et al. Temporal difference learning and td-gammon. Commun ACM. 1995;38(3):58–68.CrossRef Tesauro G, et al. Temporal difference learning and td-gammon. Commun ACM. 1995;38(3):58–68.CrossRef
32.
go back to reference Ramos J, et al. Using tf-idf to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning. 2003;242:29–48. Citeseer. Ramos J, et al. Using tf-idf to determine word relevance in document queries. In: Proceedings of the First Instructional Conference on Machine Learning. 2003;242:29–48. Citeseer.
33.
go back to reference Li X, Chen Y-N, Li L, Gao J, Celikyilmaz A. End-to-end task-completion neural dialogue systems. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2017; pp. 733–743. Li X, Chen Y-N, Li L, Gao J, Celikyilmaz A. End-to-end task-completion neural dialogue systems. In: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). 2017; pp. 733–743.
34.
go back to reference Deemter KV, Theune M, Krahmer E. Real versus template-based natural language generation: A false opposition? Computational Linguistics. 2005;31(1):15–24. Deemter KV, Theune M, Krahmer E. Real versus template-based natural language generation: A false opposition? Computational Linguistics. 2005;31(1):15–24.
36.
go back to reference Yan G, Pei J, Ren P, Chen Z, Ren Z, Liang H. M\(\hat{}\) 2-meddialog: A dataset and benchmarks for multi-domain multi-service medical dialogues. 2021. arXiv preprint arXiv:2109.00430. Yan G, Pei J, Ren P, Chen Z, Ren Z, Liang H. M\(\hat{}\) 2-meddialog: A dataset and benchmarks for multi-domain multi-service medical dialogues. 2021. arXiv preprint arXiv:​2109.​00430.
37.
go back to reference Zeng G, Yang W, Ju Z, Yang Y, Wang S, Zhang R, Zhou M, Zeng J, Dong X, Zhang R, et al. Meddialog: Large-scale medical dialogue dataset. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. Zeng G, Yang W, Ju Z, Yang Y, Wang S, Zhang R, Zhou M, Zeng J, Dong X, Zhang R, et al. Meddialog: Large-scale medical dialogue dataset. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020.
38.
go back to reference Franc V, Hlavác V. Multi-class support vector machine. In: Object Recognition Supported by User Interaction for Service Robots. 2002;2:236–239. IEEE. Franc V, Hlavác V. Multi-class support vector machine. In: Object Recognition Supported by User Interaction for Service Robots. 2002;2:236–239. IEEE.
39.
go back to reference Xia Y, Zhou J, Shi Z, Lu C, Huang H. Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34:1062–1069. Xia Y, Zhou J, Shi Z, Lu C, Huang H. Generative adversarial regularized mutual information policy gradient framework for automatic diagnosis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34:1062–1069.
40.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning. 2013. arXiv preprint arXiv:1312.5602. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller M. Playing atari with deep reinforcement learning. 2013. arXiv preprint arXiv:​1312.​5602.
41.
go back to reference Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2016;30. Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2016;30.
42.
go back to reference Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. In: ICLR (Poster). 2016. Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience replay. In: ICLR (Poster). 2016.
43.
go back to reference Tiwari A, Raj R, Saha S, Bhattacharyya P, Tiwari S, Dhar M. Towards symptom assessment guided symptom investigation and disease diagnosis. IEEE Trans Artif Intell. 2023. Tiwari A, Raj R, Saha S, Bhattacharyya P, Tiwari S, Dhar M. Towards symptom assessment guided symptom investigation and disease diagnosis. IEEE Trans Artif Intell. 2023.
44.
go back to reference Welch BL. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika. 1947;34(1–2):28–35.MathSciNet Welch BL. The generalization of ‘student’s’ problem when several different population varlances are involved. Biometrika. 1947;34(1–2):28–35.MathSciNet
Metadata
Title
Learning from Failure: Towards Developing a Disease Diagnosis Assistant That Also Learns from Unsuccessful Diagnoses
Authors
Abhisek Tiwari
Swarna S
Sriparna Saha
Pushpak Bhattacharyya
Minakshi Dhar
Sarbajeet Tiwari
Publication date
27-06-2024
Publisher
Springer US
Published in
Cognitive Computation / Issue 5/2024
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-024-10274-4

Premium Partner