Skip to main content
Top
Published in:

09-10-2023

Learning search algorithm to solve real-world optimization problems and parameter extract of photovoltaic models

Authors: Chiwen Qu, Zenghui Lu, Fanjing Lu

Published in: Journal of Computational Electronics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solar energy is widely acknowledged as a promising and abundant source of clean electricity. Unfortunately, the efficiency of converting solar energy into electricity using photovoltaic (PV) systems is not yet satisfactory due to technical limitations. To improve this, it is essential to develop an accurate model that incorporates well-estimated parameters. However, the parameter identification process in the PV model is challenging due to its nonlinear and multi-modal characteristics. In this study, we propose a novel metaheuristic algorithm called the learning search algorithm (LSA) to address the parameter estimation problem in solar PV models. LSA utilizes historical experience and social information to guide the search process, thus enhancing global exploitation capability. Additionally, it improves the learning ability of the population through teaching and active learning activities based on optimal individuals, which enhances local development capability. The algorithm also incorporates a dynamic self-adaptive control factor to balance global exploration and local development capabilities. Experimental results demonstrate that our proposed LSA outperforms other comparison algorithms in terms of accuracy, convergence rate, and stability in parameter identification of PV models. Statistical tests confirm the superior efficiency and effectiveness of the LSA in parameter estimation. Moreover, our algorithm demonstrates competitive performance in solving real-world optimization problems with constraints. Overall, our study contributes to the improvement of solar energy conversion efficiency through the development of an accurate parameter estimation model using the LSA.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., et al.: Optimal extraction of solar cell parameters using pattern search. Renew. Energy 44, 238–245 (2012)CrossRef AlHajri, M.F., El-Naggar, K.M., AlRashidi, M.R., et al.: Optimal extraction of solar cell parameters using pattern search. Renew. Energy 44, 238–245 (2012)CrossRef
2.
go back to reference AlRashidi, M.R., AlHajri, M.F., El-Naggar, K.M., Al-Othman, A.K.: A new estimation approach for determining the I–V characteristics of solar cells. Sol. Energy 85, 1543–1550 (2011)CrossRef AlRashidi, M.R., AlHajri, M.F., El-Naggar, K.M., Al-Othman, A.K.: A new estimation approach for determining the I–V characteristics of solar cells. Sol. Energy 85, 1543–1550 (2011)CrossRef
3.
go back to reference Baharoon, D.A., Rahman, H.A., Omar, W.Z.W., et al.: Historical development of concentrating solar power technologies to generate clean electricity efficiently–a review. Renew. Sustain. Energy Rev. 41, 996–1027 (2015)CrossRef Baharoon, D.A., Rahman, H.A., Omar, W.Z.W., et al.: Historical development of concentrating solar power technologies to generate clean electricity efficiently–a review. Renew. Sustain. Energy Rev. 41, 996–1027 (2015)CrossRef
4.
go back to reference Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)CrossRef Parida, B., Iniyan, S., Goic, R.: A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15, 1625–1636 (2011)CrossRef
5.
go back to reference Ullah, N., Sami, I., Jamal Babqi, A., Alkhammash, H.I., Belkhier, Y., Althobaiti, A., Ibeas, A.: Processor in the loop verification of fault tolerant control for a three phase inverter in grid connected PV system. Energy Sour. Part A Recovery Utilization Environ. Eff. 45(2), 3760–3776 (2023)CrossRef Ullah, N., Sami, I., Jamal Babqi, A., Alkhammash, H.I., Belkhier, Y., Althobaiti, A., Ibeas, A.: Processor in the loop verification of fault tolerant control for a three phase inverter in grid connected PV system. Energy Sour. Part A Recovery Utilization Environ. Eff. 45(2), 3760–3776 (2023)CrossRef
6.
go back to reference Dashtdar, M., Sarada, K., Hosseinimoghadam, S.M.S., et al.: Faulted section identification and fault location in power network based on histogram analysis of three-phase current and voltage modulated. J. Electr. Eng. Technol. 17, 2631–2647 (2022)CrossRef Dashtdar, M., Sarada, K., Hosseinimoghadam, S.M.S., et al.: Faulted section identification and fault location in power network based on histogram analysis of three-phase current and voltage modulated. J. Electr. Eng. Technol. 17, 2631–2647 (2022)CrossRef
7.
go back to reference Yahiaoui, F., Chabour, F., Guenounou, O., Zaouche, F., Belkhier, Y., Bajaj, M., Shouran, M., Elgaml, E., Kamel, S.: Experimental validation and intelligent control of a stand-alone solar energy conversion system using dSPACE platform. Front. Energy Res. 10, 971384 (2022)CrossRef Yahiaoui, F., Chabour, F., Guenounou, O., Zaouche, F., Belkhier, Y., Bajaj, M., Shouran, M., Elgaml, E., Kamel, S.: Experimental validation and intelligent control of a stand-alone solar energy conversion system using dSPACE platform. Front. Energy Res. 10, 971384 (2022)CrossRef
8.
go back to reference Chen, Z., Wu, L., Lin, P., Wu, Y., Cheng, S., Yan, J.: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Appl. Energy 182, 47–57 (2016)CrossRef Chen, Z., Wu, L., Lin, P., Wu, Y., Cheng, S., Yan, J.: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy. Appl. Energy 182, 47–57 (2016)CrossRef
9.
go back to reference Fathy, A., Rezk, H.: Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 111, 307–320 (2017)CrossRef Fathy, A., Rezk, H.: Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 111, 307–320 (2017)CrossRef
10.
go back to reference Yu, K., Liang, J.J., Qu, B.Y., Cheng, Z., Wang, H.: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 226, 408–422 (2018)CrossRef Yu, K., Liang, J.J., Qu, B.Y., Cheng, Z., Wang, H.: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 226, 408–422 (2018)CrossRef
11.
go back to reference Appelbaum, J., Peled, A.: Parameters extraction of solar cells—a comparative examination of three methods. Sol. Energy Mater. Sol. Cells 122, 164–173 (2014)CrossRef Appelbaum, J., Peled, A.: Parameters extraction of solar cells—a comparative examination of three methods. Sol. Energy Mater. Sol. Cells 122, 164–173 (2014)CrossRef
12.
go back to reference Chan, D.S.H., Phillips, J.R., Phang, J.C.H.: A comparative study of extraction methods for solar cell model parameters. Solid State Electron 29, 329–337 (1986)CrossRef Chan, D.S.H., Phillips, J.R., Phang, J.C.H.: A comparative study of extraction methods for solar cell model parameters. Solid State Electron 29, 329–337 (1986)CrossRef
13.
go back to reference Dkhichi, F., Oukarfi, B., Fakkar, A., Belbounaguia, N.: Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Sol. Energy 110, 781–788 (2014)CrossRef Dkhichi, F., Oukarfi, B., Fakkar, A., Belbounaguia, N.: Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing. Sol. Energy 110, 781–788 (2014)CrossRef
14.
go back to reference Chaibi, Y., Allouhi, A., Salhi, M.: A simple iterative method to determine the electrical parameters of photovoltaic cell. J. Clean. Prod. 269, 122363 (2020)CrossRef Chaibi, Y., Allouhi, A., Salhi, M.: A simple iterative method to determine the electrical parameters of photovoltaic cell. J. Clean. Prod. 269, 122363 (2020)CrossRef
15.
go back to reference Chin, V.J., Salam, Z., Ishaque, K.: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl. Energy 154, 500–519 (2015)CrossRef Chin, V.J., Salam, Z., Ishaque, K.: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl. Energy 154, 500–519 (2015)CrossRef
16.
go back to reference Ishaque, K., Salam, Z., Mekhilef, S., Shamsudin, A.: Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl. Energy 99, 297–308 (2012)CrossRef Ishaque, K., Salam, Z., Mekhilef, S., Shamsudin, A.: Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl. Energy 99, 297–308 (2012)CrossRef
17.
go back to reference Askarzadeh, A., Rezazadeh, A.: Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 102, 943–949 (2013)CrossRef Askarzadeh, A., Rezazadeh, A.: Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy 102, 943–949 (2013)CrossRef
18.
go back to reference Oliva, D., Cuevas, E., Pajares, G.: Parameter identification of solar cells using artificial bee colony optimization. Energy 72, 93–102 (2014)CrossRef Oliva, D., Cuevas, E., Pajares, G.: Parameter identification of solar cells using artificial bee colony optimization. Energy 72, 93–102 (2014)CrossRef
19.
go back to reference Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 73, 10–25 (2013)CrossRef Ismail, M.S., Moghavvemi, M., Mahlia, T.M.I.: Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 73, 10–25 (2013)CrossRef
20.
go back to reference Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012)CrossRef Askarzadeh, A., Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012)CrossRef
21.
go back to reference Sarjila, R., Ravi, K., Belwin Edward, J., et al.: Parameter extraction of solar photovoltaic modules using gravitational search algorithm. J. Electr. Comput. Eng. 2016, 2143572 (2016) Sarjila, R., Ravi, K., Belwin Edward, J., et al.: Parameter extraction of solar photovoltaic modules using gravitational search algorithm. J. Electr. Comput. Eng. 2016, 2143572 (2016)
22.
go back to reference Hasanien, H.M.: Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans. Sustain. Energy 6(2), 509–515 (2015)CrossRef Hasanien, H.M.: Shuffled frog leaping algorithm for photovoltaic model identification. IEEE Trans. Sustain. Energy 6(2), 509–515 (2015)CrossRef
23.
go back to reference Xiong, G., Zhang, J., Yuan, X., et al.: Application of symbiotic organisms search algorithm for parameter extraction of solar cell models. Appl. Sci 8(11), 2155 (2018)CrossRef Xiong, G., Zhang, J., Yuan, X., et al.: Application of symbiotic organisms search algorithm for parameter extraction of solar cell models. Appl. Sci 8(11), 2155 (2018)CrossRef
24.
go back to reference Allam, D., Yousri, D.A., Eteiba, M.B.: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth–Flame optimization algorithm. Energy Convers. Manag. 123, 535–548 (2016)CrossRef Allam, D., Yousri, D.A., Eteiba, M.B.: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth–Flame optimization algorithm. Energy Convers. Manag. 123, 535–548 (2016)CrossRef
25.
go back to reference Sheng, H., Li, C., Wang, H., et al.: Parameters extraction of photovoltaic models using an improved moth–flame optimization. Energies 12(18), 3527 (2019)CrossRef Sheng, H., Li, C., Wang, H., et al.: Parameters extraction of photovoltaic models using an improved moth–flame optimization. Energies 12(18), 3527 (2019)CrossRef
26.
go back to reference Askarzadeh, A., Coelho, L.D.S.: Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Convers. Manag. 89, 608–614 (2015)CrossRef Askarzadeh, A., Coelho, L.D.S.: Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Convers. Manag. 89, 608–614 (2015)CrossRef
27.
go back to reference Askarzadeh, A., Rezazadeh, A.: Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol. Energy 90, 123–133 (2013)CrossRef Askarzadeh, A., Rezazadeh, A.: Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach. Sol. Energy 90, 123–133 (2013)CrossRef
28.
go back to reference Sharma, A., Dasgotra, A., Tiwari, S.K., et al.: Parameter extraction of photovoltaic module using tunicate swarm algorithm. Electronics 10(8), 878 (2021)CrossRef Sharma, A., Dasgotra, A., Tiwari, S.K., et al.: Parameter extraction of photovoltaic module using tunicate swarm algorithm. Electronics 10(8), 878 (2021)CrossRef
29.
go back to reference Subudhi, B., Pradhan, R.: Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Trans. Sustain. Energy 9(1), 381–389 (2017)CrossRef Subudhi, B., Pradhan, R.: Bacterial foraging optimization approach to parameter extraction of a photovoltaic module. IEEE Trans. Sustain. Energy 9(1), 381–389 (2017)CrossRef
30.
go back to reference Li, S., Gong, W., Yan, X., et al.: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers. Manag. 186, 293–305 (2019)CrossRef Li, S., Gong, W., Yan, X., et al.: Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization. Energy Convers. Manag. 186, 293–305 (2019)CrossRef
31.
go back to reference Merchaoui, M., Sakly, A., Mimouni, M.F.: Particle swarm optimization with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 175, 151–163 (2018)CrossRef Merchaoui, M., Sakly, A., Mimouni, M.F.: Particle swarm optimization with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 175, 151–163 (2018)CrossRef
32.
go back to reference Alam, D.F., Yousri, D.A., Eteiba, M.B.: Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 101, 410–422 (2015)CrossRef Alam, D.F., Yousri, D.A., Eteiba, M.B.: Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 101, 410–422 (2015)CrossRef
33.
go back to reference Yu, K., Liang, J., Qu, B., Chen, X., Wang, H.: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 150, 742–753 (2017)CrossRef Yu, K., Liang, J., Qu, B., Chen, X., Wang, H.: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 150, 742–753 (2017)CrossRef
34.
go back to reference Kharchouf, Y., Herbazi, R., Chahboun, A.: Parameterʼs extraction of solar photovoltaic models using an improved differential evolution algorithm. Energy Convers. Manag. 251, 114972 (2022)CrossRef Kharchouf, Y., Herbazi, R., Chahboun, A.: Parameterʼs extraction of solar photovoltaic models using an improved differential evolution algorithm. Energy Convers. Manag. 251, 114972 (2022)CrossRef
35.
go back to reference Gao, S., Wang, K., Tao, S., et al.: A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers. Manag. 230, 113784 (2021)CrossRef Gao, S., Wang, K., Tao, S., et al.: A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers. Manag. 230, 113784 (2021)CrossRef
36.
go back to reference Wang, D., Sun, X., Kang, H., et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Rep. 8, 4724–4746 (2022)CrossRef Wang, D., Sun, X., Kang, H., et al.: Heterogeneous differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Rep. 8, 4724–4746 (2022)CrossRef
37.
go back to reference Xiong, G., Zhang, J., Shi, D., et al.: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 174, 388–405 (2018)CrossRef Xiong, G., Zhang, J., Shi, D., et al.: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 174, 388–405 (2018)CrossRef
38.
go back to reference Xiong, G., Zhang, J., Yuan, X., et al.: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 176, 742–761 (2018)CrossRef Xiong, G., Zhang, J., Yuan, X., et al.: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm. Sol. Energy 176, 742–761 (2018)CrossRef
39.
go back to reference Mokeddem, D.: Parameter extraction of solar photovoltaic models using enhanced Levy flight based grasshopper optimization algorithm. J. Electr. Eng. Technol. 16(1), 171–179 (2021)CrossRef Mokeddem, D.: Parameter extraction of solar photovoltaic models using enhanced Levy flight based grasshopper optimization algorithm. J. Electr. Eng. Technol. 16(1), 171–179 (2021)CrossRef
40.
go back to reference Sallam, K.M., Hossain, M.A., Chakrabortty, R.K., et al.: An improved gaining–sharing knowledge algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 237, 114030 (2021)CrossRef Sallam, K.M., Hossain, M.A., Chakrabortty, R.K., et al.: An improved gaining–sharing knowledge algorithm for parameter extraction of photovoltaic models. Energy Convers. Manag. 237, 114030 (2021)CrossRef
41.
go back to reference Song, S., Wang, P., Heidari, A.A., et al.: Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Eng. Appl. Artif. Intell. 109, 104608 (2022)CrossRef Song, S., Wang, P., Heidari, A.A., et al.: Adaptive Harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Eng. Appl. Artif. Intell. 109, 104608 (2022)CrossRef
42.
go back to reference Gude, S., Jana, K.C.: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization. Sol. Energy 204, 280–293 (2020)CrossRef Gude, S., Jana, K.C.: Parameter extraction of photovoltaic cell using an improved cuckoo search optimization. Sol. Energy 204, 280–293 (2020)CrossRef
43.
go back to reference Eslami, M., Akbari, E., SeyedSadr, S.T., et al.: A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 8(10), 2689–2731 (2022)CrossRef Eslami, M., Akbari, E., SeyedSadr, S.T., et al.: A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 8(10), 2689–2731 (2022)CrossRef
44.
go back to reference Chen, X., Xu, B., Mei, C., et al.: Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212, 1578–1588 (2018)CrossRef Chen, X., Xu, B., Mei, C., et al.: Teaching–learning-based artificial bee colony for solar photovoltaic parameter estimation. Appl. Energy 212, 1578–1588 (2018)CrossRef
45.
go back to reference Long, W., Cai, S., Jiao, J., et al.: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 203, 112243 (2020)CrossRef Long, W., Cai, S., Jiao, J., et al.: A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models. Energy Convers. Manag. 203, 112243 (2020)CrossRef
46.
go back to reference Zagrouba, M., Sellami, A., Bouaïcha, M., Ksouri, M.: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol. Energy 84, 860–866 (2010)CrossRef Zagrouba, M., Sellami, A., Bouaïcha, M., Ksouri, M.: Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol. Energy 84, 860–866 (2010)CrossRef
47.
go back to reference Celik, A.N., Acikgoz, N.: Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models. Appl. Energy 84(1), 1–15 (2007)CrossRef Celik, A.N., Acikgoz, N.: Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four-and five-parameter models. Appl. Energy 84(1), 1–15 (2007)CrossRef
48.
go back to reference Humada, A.M., Hojabri, M., Mekhilef, S., et al.: Solar cell parameters extraction based on single and double-diode models: a review. Renew. Sustain. Energy Rev. 56, 494–509 (2016)CrossRef Humada, A.M., Hojabri, M., Mekhilef, S., et al.: Solar cell parameters extraction based on single and double-diode models: a review. Renew. Sustain. Energy Rev. 56, 494–509 (2016)CrossRef
49.
go back to reference Wang, Z. S., Pan, J. S., Huang, K., et al.: Hybrid Gray Wolf optimization and Cuckoo search algorithm based on the Taguchi theory.In: Advances in Intelligent Information Hiding and Multimedia Signal Processing, vol. 2, pp. 219–228. Springer, Singapore (2022) Wang, Z. S., Pan, J. S., Huang, K., et al.: Hybrid Gray Wolf optimization and Cuckoo search algorithm based on the Taguchi theory.In: Advances in Intelligent Information Hiding and Multimedia Signal Processing, vol. 2, pp. 219–228. Springer, Singapore (2022)
50.
go back to reference Kler, D., et al.: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm. Swarm Evol. Comput. 35, 93e110 (2017)CrossRef Kler, D., et al.: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm. Swarm Evol. Comput. 35, 93e110 (2017)CrossRef
51.
go back to reference McFarland, D., Bösser, T., Bosser, T.: Intelligent behavior in animals and robots. Mit Press, (1993) McFarland, D., Bösser, T., Bosser, T.: Intelligent behavior in animals and robots. Mit Press, (1993)
52.
go back to reference Bennett, S.: Learning behaviors and learning spaces. Portal Libr. Acad. 11(3), 765–789 (2011)CrossRef Bennett, S.: Learning behaviors and learning spaces. Portal Libr. Acad. 11(3), 765–789 (2011)CrossRef
53.
go back to reference Schoenewolf, G.: Emotional contagion: behavioral induction in individuals and groups. Mod. Psychoanal. 15(1), 49–61 (1990) Schoenewolf, G.: Emotional contagion: behavioral induction in individuals and groups. Mod. Psychoanal. 15(1), 49–61 (1990)
54.
go back to reference Bruner, J. S.: The process of education. Harvard University Press, (2009) Bruner, J. S.: The process of education. Harvard University Press, (2009)
55.
go back to reference Bruner, J.S.: The Process of education. Revisit. Phi Delta Kappan 53(1), 18–21 (1971) Bruner, J.S.: The Process of education. Revisit. Phi Delta Kappan 53(1), 18–21 (1971)
56.
go back to reference Peters, R. S.: What is an educational process?. In: The Concept of Education (International Library of the Philosophy of Education Vol. 17), pp. 8–23. Routledge (2010) Peters, R. S.: What is an educational process?. In: The Concept of Education (International Library of the Philosophy of Education Vol. 17), pp. 8–23. Routledge (2010)
57.
go back to reference Easwarakhanthan, T., Bottin, J., Bouhouch, I., Boutrit, C.: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol. Energy 4, 1–12 (1986)CrossRef Easwarakhanthan, T., Bottin, J., Bouhouch, I., Boutrit, C.: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol. Energy 4, 1–12 (1986)CrossRef
58.
go back to reference Tong, N.T., Pora, W.: A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy 176, 104–115 (2016)CrossRef Tong, N.T., Pora, W.: A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy 176, 104–115 (2016)CrossRef
59.
go back to reference Yang, X., Hossein, G.A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)CrossRef Yang, X., Hossein, G.A.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29, 464–483 (2012)CrossRef
60.
go back to reference Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft. Comput. 11(8), 5508–5518 (2011)CrossRef Rajabioun, R.: Cuckoo optimization algorithm. Appl. Soft. Comput. 11(8), 5508–5518 (2011)CrossRef
61.
go back to reference Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)CrossRef Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)CrossRef
62.
go back to reference Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRef Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRef
63.
go back to reference Yang, X. S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing And Natural Computation, pp. 240–249. Springer, Berlin (2012) Yang, X. S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing And Natural Computation, pp. 240–249. Springer, Berlin (2012)
64.
go back to reference Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRef Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRef
65.
go back to reference Chen, H., Jiao, S., Wang, M., Heidari, A.A., Zhao, X.: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020)CrossRef Chen, H., Jiao, S., Wang, M., Heidari, A.A., Zhao, X.: Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts. J. Clean. Prod. 244, 118778 (2020)CrossRef
66.
go back to reference Naruei, I., Keynia, F., Sabbagh, M.A.: Hunter-Prey optimization: Algorithm and applications. Soft. Comput. 26(3), 1279–1314 (2022)CrossRef Naruei, I., Keynia, F., Sabbagh, M.A.: Hunter-Prey optimization: Algorithm and applications. Soft. Comput. 26(3), 1279–1314 (2022)CrossRef
67.
go back to reference Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRef Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRef
68.
go back to reference Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114(12), 163–191 (2017)CrossRef Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114(12), 163–191 (2017)CrossRef
69.
go back to reference Abualigah, L., Shehab, M., Alshinwan, M., et al.: Salp swarm algorithm: a comprehensive survey. Neural Comput. Appl. 32(15), 11195–11215 (2020)CrossRef Abualigah, L., Shehab, M., Alshinwan, M., et al.: Salp swarm algorithm: a comprehensive survey. Neural Comput. Appl. 32(15), 11195–11215 (2020)CrossRef
70.
go back to reference Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)MathSciNetCrossRef Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)MathSciNetCrossRef
71.
go back to reference Kaur, S., Awasthi, L.K., Sangal, A.L., et al.: Tunicate Swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)CrossRef Kaur, S., Awasthi, L.K., Sangal, A.L., et al.: Tunicate Swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)CrossRef
72.
go back to reference Akbari, E., Rahimnejad, A., Gadsden, S.A.: A greedy non-hierarchical grey wolf optimizer for real-world optimization. Electron. Lett. 57(13), 499–501 (2021)CrossRef Akbari, E., Rahimnejad, A., Gadsden, S.A.: A greedy non-hierarchical grey wolf optimizer for real-world optimization. Electron. Lett. 57(13), 499–501 (2021)CrossRef
73.
go back to reference Dehkordi, A.A., Sadiq, A.S., Mirjalili, S., et al.: Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application. Appl. Soft. Comput. 109, 107574 (2021)CrossRef Dehkordi, A.A., Sadiq, A.S., Mirjalili, S., et al.: Nonlinear-based chaotic harris hawks optimizer: algorithm and internet of vehicles application. Appl. Soft. Comput. 109, 107574 (2021)CrossRef
74.
go back to reference Xu, S., Wang, Y.: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 144, 53–68 (2017)CrossRef Xu, S., Wang, Y.: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 144, 53–68 (2017)CrossRef
75.
go back to reference Merchaoui, M., Sakly, A., Mimouni, M.F.: Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 175, 151–163 (2018)CrossRef Merchaoui, M., Sakly, A., Mimouni, M.F.: Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 175, 151–163 (2018)CrossRef
76.
go back to reference Fan, Y., Wang, P., Heidari, A.A., Chen, H., et al.: Random reselection particle swarm optimization for optimal design of solar photovoltaic modules. Energy 239, 121865 (2022)CrossRef Fan, Y., Wang, P., Heidari, A.A., Chen, H., et al.: Random reselection particle swarm optimization for optimal design of solar photovoltaic modules. Energy 239, 121865 (2022)CrossRef
77.
go back to reference Kumar, A., Wu, G., Ali, M.Z., et al.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020)CrossRef Kumar, A., Wu, G., Ali, M.Z., et al.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020)CrossRef
78.
go back to reference Bandyopadhyay, R., Basu, A., Cuevas, E., et al.: Harris Hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl. Soft.Comput. 111, 107698 (2021)CrossRef Bandyopadhyay, R., Basu, A., Cuevas, E., et al.: Harris Hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans. Appl. Soft.Comput. 111, 107698 (2021)CrossRef
79.
go back to reference Alkayem, N.F., Cao, M., Shen, L., et al.: The combined social engineering particle swarm optimization for real-world engineering problems: A case study of model-based structural health monitoring. Appl. Soft. Comput. 123, 108919 (2022)CrossRef Alkayem, N.F., Cao, M., Shen, L., et al.: The combined social engineering particle swarm optimization for real-world engineering problems: A case study of model-based structural health monitoring. Appl. Soft. Comput. 123, 108919 (2022)CrossRef
80.
go back to reference Gurrola-Ramos, J., Hernàndez-Aguirre, A., Dalmau-Cedeño, O.: COLSHADE for real-world single-objective constrained optimization problems. 2020 IEEE Congr. Evolut. Comput. (CEC) 2020, 1–8 (2020) Gurrola-Ramos, J., Hernàndez-Aguirre, A., Dalmau-Cedeño, O.: COLSHADE for real-world single-objective constrained optimization problems. 2020 IEEE Congr. Evolut. Comput. (CEC) 2020, 1–8 (2020)
81.
go back to reference Trivedi, A., Srinivasan, D., Biswas, N.: An improved unified differential evolution algorithm for constrained optimization problems. 2018 IEEE Congr. Evolut. Comput. (CEC) 2018, 1–10 (2018) Trivedi, A., Srinivasan, D., Biswas, N.: An improved unified differential evolution algorithm for constrained optimization problems. 2018 IEEE Congr. Evolut. Comput. (CEC) 2018, 1–10 (2018)
82.
go back to reference Hellwig, M., Beyer, H.: A matrix adaptation evolution strategy for constrained real-parameter optimization. 2018 IEEE Congr. Evolut. Comput. (CEC) 2018, 1–8 (2018) Hellwig, M., Beyer, H.: A matrix adaptation evolution strategy for constrained real-parameter optimization. 2018 IEEE Congr. Evolut. Comput. (CEC) 2018, 1–8 (2018)
83.
go back to reference Kumar, A., Das, S., Zelinka, I.: A self-adaptive spherical search algorithm for real-world constrained optimization problems. Proc 2020 Genet. Evolut. Comput. Conf. Companion 2020, 13–14 (2020) Kumar, A., Das, S., Zelinka, I.: A self-adaptive spherical search algorithm for real-world constrained optimization problems. Proc 2020 Genet. Evolut. Comput. Conf. Companion 2020, 13–14 (2020)
84.
go back to reference Kumar, A., Das, S., Zelinka, I.: A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. Proc. 2020 Genet. Evolut. Comput. Conf. Companion 2020, 11–12 (2020) Kumar, A., Das, S., Zelinka, I.: A modified covariance matrix adaptation evolution strategy for real-world constrained optimization problems. Proc. 2020 Genet. Evolut. Comput. Conf. Companion 2020, 11–12 (2020)
85.
go back to reference Liang, J., Qiao, K., Yu, K., et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Sol. Energy 207, 336–346 (2020)CrossRef Liang, J., Qiao, K., Yu, K., et al.: Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution. Sol. Energy 207, 336–346 (2020)CrossRef
Metadata
Title
Learning search algorithm to solve real-world optimization problems and parameter extract of photovoltaic models
Authors
Chiwen Qu
Zenghui Lu
Fanjing Lu
Publication date
09-10-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02095-9