Skip to main content
Top
Published in: International Journal of Computer Vision 2-3/2015

01-09-2015

Learning Sparse FRAME Models for Natural Image Patterns

Authors: Jianwen Xie, Wenze Hu, Song-Chun Zhu, Ying Nian Wu

Published in: International Journal of Computer Vision | Issue 2-3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is well known that natural images admit sparse representations by redundant dictionaries of basis functions such as Gabor-like wavelets. However, it is still an open question as to what the next layer of representational units above the layer of wavelets should be. We address this fundamental question by proposing a sparse FRAME (Filters, Random field, And Maximum Entropy) model for representing natural image patterns. Our sparse FRAME model is an inhomogeneous generalization of the original FRAME model. It is a non-stationary Markov random field model that reproduces the observed statistical properties of filter responses at a subset of selected locations, scales and orientations. Each sparse FRAME model is intended to represent an object pattern and can be considered a deformable template. The sparse FRAME model can be written as a shared sparse coding model, which motivates us to propose a two-stage algorithm for learning the model. The first stage selects the subset of wavelets from the dictionary by a shared matching pursuit algorithm. The second stage then estimates the parameters of the model given the selected wavelets. Our experiments show that the sparse FRAME models are capable of representing a wide variety of object patterns in natural images and that the learned models are useful for object classification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.CrossRef Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.CrossRef
go back to reference Adler, A., Elad, M., & Hel-Or, Y. (2013). Probabilistic Subspace Clustering via Sparse Representations. IEEE Signal Processing Letters, 20, 63–66.CrossRef Adler, A., Elad, M., & Hel-Or, Y. (2013). Probabilistic Subspace Clustering via Sparse Representations. IEEE Signal Processing Letters, 20, 63–66.CrossRef
go back to reference Aharon, M., Elad, M., & Bruckstein, A. M. (2006). The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54, 4311–4322.CrossRef Aharon, M., Elad, M., & Bruckstein, A. M. (2006). The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54, 4311–4322.CrossRef
go back to reference Bengio, Y., Courville, A. C., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on PAMI, 35, 1798–1828. Bengio, Y., Courville, A. C., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on PAMI, 35, 1798–1828.
go back to reference Bruckstein, A. M., Donoho, D. L., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51, 34–81.CrossRefMathSciNetMATH Bruckstein, A. M., Donoho, D. L., & Elad, M. (2009). From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Review, 51, 34–81.CrossRefMathSciNetMATH
go back to reference Chen, J., & Huo, X. (2005). Sparse representations for multiple measurements vectors (mmv) in an overcomplete dictionary. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 257–260. Chen, J., & Huo, X. (2005). Sparse representations for multiple measurements vectors (mmv) in an overcomplete dictionary. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 257–260.
go back to reference Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886-893. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886-893.
go back to reference Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.MathSciNetMATH Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.MathSciNetMATH
go back to reference Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters, 195, 216–222.CrossRef Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters, 195, 216–222.CrossRef
go back to reference Elad, M. (2010). Sparse and redundant representations: From theory to applications in signal and image processing. Berlin: Springer.CrossRef Elad, M. (2010). Sparse and redundant representations: From theory to applications in signal and image processing. Berlin: Springer.CrossRef
go back to reference Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions Image Processing, 15, 3736–3745.CrossRefMathSciNet Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions Image Processing, 15, 3736–3745.CrossRefMathSciNet
go back to reference Elad, M., Milanfar, P., & Rubinstein, R. (2007). Analysis versus synthesis in signal priors. Inverse problems, 23(3), 947. Elad, M., Milanfar, P., & Rubinstein, R. (2007). Analysis versus synthesis in signal priors. Inverse problems, 23(3), 947.
go back to reference Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIBLINEAR: A library for large linear classication. Journal of Machine Learning Research, 9, 1871–1874.MATH Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIBLINEAR: A library for large linear classication. Journal of Machine Learning Research, 9, 1871–1874.MATH
go back to reference Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Procedings of the Computer Vision and Pattern Recognition Workshops. Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. In: Procedings of the Computer Vision and Pattern Recognition Workshops.
go back to reference Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on PAMI, 32, 1627–1645.CrossRef Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on PAMI, 32, 1627–1645.CrossRef
go back to reference Ferrari, V., Jurie, F., & Schmid, C. (2010). From images to shape models for object detection. International Journal of Computer Vision, 87, 284–303. Ferrari, V., Jurie, F., & Schmid, C. (2010). From images to shape models for object detection. International Journal of Computer Vision, 87, 284–303.
go back to reference Fidler, S., Boben, M. & Leonardis, A. (2008). Similarity-based cross-layered hierarchical representation for object categorization. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR). Fidler, S., Boben, M. & Leonardis, A. (2008). Similarity-based cross-layered hierarchical representation for object categorization. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR).
go back to reference Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the American Statistical Association, 82, 249–266.CrossRefMathSciNet Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the American Statistical Association, 82, 249–266.CrossRefMathSciNet
go back to reference Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.CrossRefMathSciNetMATH Gelman, A., & Meng, X. L. (1998). Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science, 13, 163–185.CrossRefMathSciNetMATH
go back to reference Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on PAMI, 6, 721–741.CrossRefMATH Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on PAMI, 6, 721–741.CrossRefMATH
go back to reference Geman, S., Potter, D. F., & Chi, Z. (2002). Composition systems. Quarterly of Applied Mathematics, 60, 707–736.MathSciNetMATH Geman, S., Potter, D. F., & Chi, Z. (2002). Composition systems. Quarterly of Applied Mathematics, 60, 707–736.MathSciNetMATH
go back to reference Gong, B., Shi, Y., Sha, F. & Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Gong, B., Shi, Y., Sha, F. & Grauman, K. (2012). Geodesic flow kernel for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Gopalan, R., Li, R., & Chellappa, R. (2011). Domain adaptation for object recognition: an unsupervised approach. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).
go back to reference Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Caltech: Technical report. Griffin, G., Holub, A., & Perona, P. (2007). Caltech-256 object category dataset. Caltech: Technical report.
go back to reference Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771–1800.CrossRefMATH Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771–1800.CrossRefMATH
go back to reference Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.CrossRefMathSciNetMATH Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527–1554.CrossRefMathSciNetMATH
go back to reference Hoffman, J., Rodner, E., Donahue, J., Saenko, K., & Darrell, T. (2013). Efficient learning of domain-invariant image representations. In: Proceedings of the International Conference of Learning Representations. Hoffman, J., Rodner, E., Donahue, J., Saenko, K., & Darrell, T. (2013). Efficient learning of domain-invariant image representations. In: Proceedings of the International Conference of Learning Representations.
go back to reference Hong, Y., Si, Z., Hu, W., Zhu, S. C., & Wu, Y. N. (2013). Unsupervised learning of compositional sparse code for natural image representation. Quarterly of Applied Mathematics, 72, 373–406.CrossRefMathSciNet Hong, Y., Si, Z., Hu, W., Zhu, S. C., & Wu, Y. N. (2013). Unsupervised learning of compositional sparse code for natural image representation. Quarterly of Applied Mathematics, 72, 373–406.CrossRefMathSciNet
go back to reference Jhou, I., Liu, D., Lee, D. T. & Chang, S. (2012). Robust visual domain adaptation with low-rank reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Jhou, I., Liu, D., Lee, D. T. & Chang, S. (2012). Robust visual domain adaptation with low-rank reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR).. Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Conference on Computer Vision and PatternRecognition (CVPR)..
go back to reference Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning. Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning.
go back to reference Liu, C., Zhu, S.-C., & Shum, H.-Y. (2001). Learning inhomogeneous gibbs model of faces by minimax entropy. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 281–287. Liu, C., Zhu, S.-C., & Shum, H.-Y. (2001). Learning inhomogeneous gibbs model of faces by minimax entropy. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 281–287.
go back to reference Lounici, K., Tsybakov, A. B., Pontil, M., & van de Geer, S. A. (2009). Taking advantage of sparsity in multi-task learning. In: Proceedings of the 22nd Conference on Learning Theory. Lounici, K., Tsybakov, A. B., Pontil, M., & van de Geer, S. A. (2009). Taking advantage of sparsity in multi-task learning. In: Proceedings of the 22nd Conference on Learning Theory.
go back to reference Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110.
go back to reference Mallat, S., & Zhang, Z. (1993). Matching pursuit in a time-frequency dictionary. IEEE Transactions on Signal Processing, 41, 3397–3415.CrossRefMATH Mallat, S., & Zhang, Z. (1993). Matching pursuit in a time-frequency dictionary. IEEE Transactions on Signal Processing, 41, 3397–3415.CrossRefMATH
go back to reference Marszalek, M., & Schmid, C. (2007). Accurate object localization with shape masks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Marszalek, M., & Schmid, C. (2007). Accurate object localization with shape masks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Nama, S., Daviesb, M. E., Eladc, M., & Gribonval, R. (2013). The cosparse analysis model and algorithms. Applied and Computational Harmonic Analysis, 34, 30–56.CrossRefMathSciNet Nama, S., Daviesb, M. E., Eladc, M., & Gribonval, R. (2013). The cosparse analysis model and algorithms. Applied and Computational Harmonic Analysis, 34, 30–56.CrossRefMathSciNet
go back to reference Neal, R. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo. Neal, R. (2011). MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo.
go back to reference Obozinski, G., Wainwright, M. J., & Jordan, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Annals of Statistics, 39, 1–47.CrossRefMathSciNetMATH Obozinski, G., Wainwright, M. J., & Jordan, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Annals of Statistics, 39, 1–47.CrossRefMathSciNetMATH
go back to reference Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.CrossRef Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.CrossRef
go back to reference Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44. Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, pp. 40–44.
go back to reference Pietra, S. D., Pietra, V. D., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on PAMI, 19, 380–393. Pietra, S. D., Pietra, V. D., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on PAMI, 19, 380–393.
go back to reference Ranzato, M., & Hinton, G. E. (2010). Modeling pixel means and covariances using factorized third-order Boltzmann machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Ranzato, M., & Hinton, G. E. (2010). Modeling pixel means and covariances using factorized third-order Boltzmann machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025.CrossRef Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2, 1019–1025.CrossRef
go back to reference Roth, S., & Black, M. (2009). Fields of experts. International Journal of Computer Vision, 82, 205–229. Roth, S., & Black, M. (2009). Fields of experts. International Journal of Computer Vision, 82, 205–229.
go back to reference Rubinstein, R., Zibulevsky, M., & Elad, M. (2010). Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing, 58, 1553–1564.CrossRefMathSciNet Rubinstein, R., Zibulevsky, M., & Elad, M. (2010). Double sparsity: Learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing, 58, 1553–1564.CrossRefMathSciNet
go back to reference Saenko, K., Kulis, B., Fritz, M. & Darrell, T. (2010). Adapting visual category models to new domains. In: Proceedings of the European Conference on Computer Vision (ECCV). Saenko, K., Kulis, B., Fritz, M. & Darrell, T. (2010). Adapting visual category models to new domains. In: Proceedings of the European Conference on Computer Vision (ECCV).
go back to reference Shekhar, S., Patel, V. M., Nguyen, H. V., & Chellappa, R. (2013). Generalized domain adaptive dictionaries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Shekhar, S., Patel, V. M., Nguyen, H. V., & Chellappa, R. (2013). Generalized domain adaptive dictionaries. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Si, Z., & Zhu, S. C. (2012). Learning hybrid image template (HIT) by information projection. IEEE Transactions on PAMI, 34, 1354–1367.CrossRef Si, Z., & Zhu, S. C. (2012). Learning hybrid image template (HIT) by information projection. IEEE Transactions on PAMI, 34, 1354–1367.CrossRef
go back to reference Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (pp. 194–281). Cambridge: MIT Press. Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (pp. 194–281). Cambridge: MIT Press.
go back to reference Teh, Y. W., Welling, M., Osindero, S., & Hinton, G. E. (2003). Energy-based models for sparse overcomplete representations. Journal of Machine Learning Research, 4, 1235–1260. Teh, Y. W., Welling, M., Osindero, S., & Hinton, G. E. (2003). Energy-based models for sparse overcomplete representations. Journal of Machine Learning Research, 4, 1235–1260.
go back to reference Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, B, 58, 267–288.MathSciNetMATH Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, B, 58, 267–288.MathSciNetMATH
go back to reference Tropp, J., Gilbert, A., & Straus, M. (2006). Algorithms for simultaneous sparse approximation. part I: Greedy pursuit. Journal of Signal Processing, 86, 572–588.CrossRefMATH Tropp, J., Gilbert, A., & Straus, M. (2006). Algorithms for simultaneous sparse approximation. part I: Greedy pursuit. Journal of Signal Processing, 86, 572–588.CrossRefMATH
go back to reference Tuytelaars, T., Lampert, C. H., Blaschko, M. B., & Buntine, W. (2009). Unsupervised object discovery: A comparison. International Journal of Computer Vision, 88(2), 284-302. Tuytelaars, T., Lampert, C. H., Blaschko, M. B., & Buntine, W. (2009). Unsupervised object discovery: A comparison. International Journal of Computer Vision, 88(2), 284-302.
go back to reference Vapnik, V. N. (2000). The nature of statistical learning theory. Berlin: Springer. Vapnik, V. N. (2000). The nature of statistical learning theory. Berlin: Springer.
go back to reference Welling, M., Hinton, G. E., & Osindero, S. (2003). Learning sparse topographic representations with products of student-t distributions. In: Proceedings of Advances in Neural Information Processing Systems (NIPS). Welling, M., Hinton, G. E., & Osindero, S. (2003). Learning sparse topographic representations with products of student-t distributions. In: Proceedings of Advances in Neural Information Processing Systems (NIPS).
go back to reference Wu, Y. N., Si, Z., Gong, H., & Zhu, S. C. (2010). Learning active basis model for object detection and recognition. International Journal of Computer Vision, 90, 198–235. Wu, Y. N., Si, Z., Gong, H., & Zhu, S. C. (2010). Learning active basis model for object detection and recognition. International Journal of Computer Vision, 90, 198–235.
go back to reference Xie, J., Hu, W., Zhu, S. C., & Wu, Y. N. (2014). Learning Inhomogeneous FRAME models for object patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Xie, J., Hu, W., Zhu, S. C., & Wu, Y. N. (2014). Learning Inhomogeneous FRAME models for object patterns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
go back to reference Yang, M., Zhang, L., Feng, X., & Zhang, D. (2011). Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 543-550. Yang, M., Zhang, L., Feng, X., & Zhang, D. (2011). Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 543-550.
go back to reference Younes, L. (1999). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastic Reports, 65, 177–228.CrossRefMathSciNetMATH Younes, L. (1999). On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics and Stochastic Reports, 65, 177–228.CrossRefMathSciNetMATH
go back to reference Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Zeiler, M., Taylor, G., & Fergus, R. (2011). Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV).
go back to reference Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008). Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: Proceedings of the European Conference on Computer Vision (ECCV). Zhu, L., Lin, C., Huang, H., Chen, Y., & Yuille, A. (2008). Unsupervised structure learning: hierarchical recursive composition, suspicious coincidence and competitive exclusion. In: Proceedings of the European Conference on Computer Vision (ECCV).
go back to reference Zhu, S. C., & Mumford, D. B. (2006). A stochastic grammar of images. Foundations and Trends in Computer Graphics and Vision, 2, 259–362.CrossRefMATH Zhu, S. C., & Mumford, D. B. (2006). A stochastic grammar of images. Foundations and Trends in Computer Graphics and Vision, 2, 259–362.CrossRefMATH
go back to reference Zhu, S. C., Wu, Y. N., & Mumford, D. B. (1998). Minimax entropy principle and its application to texture modeling. Neural Computation, 9, 1627–1660.CrossRef Zhu, S. C., Wu, Y. N., & Mumford, D. B. (1998). Minimax entropy principle and its application to texture modeling. Neural Computation, 9, 1627–1660.CrossRef
Metadata
Title
Learning Sparse FRAME Models for Natural Image Patterns
Authors
Jianwen Xie
Wenze Hu
Song-Chun Zhu
Ying Nian Wu
Publication date
01-09-2015
Publisher
Springer US
Published in
International Journal of Computer Vision / Issue 2-3/2015
Print ISSN: 0920-5691
Electronic ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-014-0757-x

Other articles of this Issue 2-3/2015

International Journal of Computer Vision 2-3/2015 Go to the issue

Premium Partner