Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2015 | OriginalPaper | Chapter

Lectures on BCOV Holomorphic Anomaly Equations

Authors: Atsushi Kanazawa, Jie Zhou

Published in: Calabi-Yau Varieties: Arithmetic, Geometry and Physics

Publisher: Springer New York

share
SHARE

Abstract

The present article surveys some mathematical aspects of the BCOV holomorphic anomaly equations introduced by Bershadsky et al. (Nucl Phys B 405:279–304, 1993; Comm Math Phys 165:311–428, 1994). It grew from a series of lectures the authors gave at the Fields Institute in the Thematic Program of Calabi–Yau Varieties in the fall of 2013.
Footnotes
1
We take a universal covering of \(\mathcal{M}\) if necessary but most of what follows works in a local setting.
 
2
We use the Einstein summation convention.
 
3
We have \(N_{g}(0) =\int _{\overline{M}_{ g}\times X^{\vee }}c_{top}(Ob) = (-1)^{g}\frac{\chi (X^{\vee })} {2} \int _{\overline{M}_{ g}}c_{g-1}^{3}(\mathcal{H}_{g})\), where \(Ob \rightarrow \overline{M}_{g,0}(X, 0)\mathop{\cong}\overline{M}_{g} \times X^{\vee }\) is the obstruction bundle and \(\mathcal{H}_{g} \rightarrow \overline{M}_{g}\) is the Hodge bundle [17].
 
4
See [14] which proposes a rigorous definition for the \(\mathcal{F}_{g}\)’s.
 
5
This case is somewhat misleading because an elliptic curve is a self-mirror manifold. However, we believe this is still a good example the reader should keep in mind.
 
6
We have to take care of the first term of the second line, see [16].
 
7
Computationally, for genus one amplitude, we need to take its derivative to get rid of the anti-holomorphic terms. Also the generating function of genus one Gromo-Witten invariants with one insertion, which is given by the first derivative of \(\mathcal{F}_{1}\), is more natural due to stability reasons.
 
Literature
1.
go back to reference Aganatic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. hep-th/0607100 Aganatic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. hep-th/0607100
2.
go back to reference Alim, M.: Lectures on mirror symmetry and topological string theory. arXiv:1207.0496 Alim, M.: Lectures on mirror symmetry and topological string theory. arXiv:1207.0496
3.
go back to reference Alim, M.: Polynomial Rings and Topological Strings. arXiv:1401.5537 [hep-th] Alim, M.: Polynomial Rings and Topological Strings. arXiv:1401.5537 [hep-th]
4.
go back to reference Alim, M., Länge, J.D.: Polynomial structure of the (open) topological string partition function. JHEP 0710, 045 (2007) CrossRef Alim, M., Länge, J.D.: Polynomial structure of the (open) topological string partition function. JHEP 0710, 045 (2007) CrossRef
5.
go back to reference Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. arXiv:1306.0002 Alim, M., Scheidegger, E., Yau, S.-T., Zhou, J.: Special polynomial rings, quasi modular forms and duality of topological strings. arXiv:1306.0002
6.
go back to reference Antoniadis, I., Gava, E., Narain, K., Taylor, T.: N=2 type II heterotic duality and higher derivative F terms. Nucl. Phys. B455, 109–130 (1995) MathSciNetCrossRef Antoniadis, I., Gava, E., Narain, K., Taylor, T.: N=2 type II heterotic duality and higher derivative F terms. Nucl. Phys. B455, 109–130 (1995) MathSciNetCrossRef
7.
go back to reference Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493–545 (1994) MathSciNetMATH Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493–545 (1994) MathSciNetMATH
8.
go back to reference Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories, (with an appendix by S.Katz). Nucl. Phys. B 405, 279–304 (1993) Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories, (with an appendix by S.Katz). Nucl. Phys. B 405, 279–304 (1993)
9.
go back to reference Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys. 165, 311–428 (1994) MathSciNetCrossRefMATH Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Comm. Math. Phys. 165, 311–428 (1994) MathSciNetCrossRefMATH
10.
go back to reference Bryant, R., Griffiths, P.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. Arith. Geom. II, 77–102 (1983); Progr. Math. 36 Bryant, R., Griffiths, P.: Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle. Arith. Geom. II, 77–102 (1983); Progr. Math. 36
11.
go back to reference Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly solvable superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991) CrossRefMATH Candelas, P., de la Ossa, X.C., Green, P.S., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly solvable superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991) CrossRefMATH
12.
go back to reference Cecotti, S., Vafa, C.: Topological anti-topological fusion. Nucl.Phys. B 367, 359–461 (1991) Cecotti, S., Vafa, C.: Topological anti-topological fusion. Nucl.Phys. B 367, 359–461 (1991)
13.
go back to reference Chiang, T., Klemm, A., Yau, S.-T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495–565 (1999) MathSciNetMATH Chiang, T., Klemm, A., Yau, S.-T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495–565 (1999) MathSciNetMATH
14.
go back to reference Costello, K.J., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv:1201.4501 [math.QA] Costello, K.J., Li, S.: Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv:1201.4501 [math.QA]
15.
go back to reference Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence (1999) Cox, D., Katz, S.: Mirror Symmetry and Algebraic Geometry. Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence (1999)
16.
go back to reference Dijkgraaf, R.: Mirror Symmetry and Elliptic Curves, the Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 149–163. Birkhäuser, Boston (1995) Dijkgraaf, R.: Mirror Symmetry and Elliptic Curves, the Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 149–163. Birkhäuser, Boston (1995)
18.
go back to reference Fang, H., Lu, Z., Yoshikawa, K.-I.: Analytic torsion for Calabi–Yau threefolds. J. Diff. Geom. 80(2), 175–259 (2008) MathSciNetMATH Fang, H., Lu, Z., Yoshikawa, K.-I.: Analytic torsion for Calabi–Yau threefolds. J. Diff. Geom. 80(2), 175–259 (2008) MathSciNetMATH
20.
go back to reference Gerasimov, A.A., Shatashvili, S.L.: Towards integrability of topological strings. I. Three-forms on Calabi–Yau manifolds. JHEP 0411, 074 (2004) Gerasimov, A.A., Shatashvili, S.L.: Towards integrability of topological strings. I. Three-forms on Calabi–Yau manifolds. JHEP 0411, 074 (2004)
21.
go back to reference Ghoshal, D., Vafa, C.: C = 1 string as the topological theory of the conifold. Nucl. Phys. B 453, 121 (1995) Ghoshal, D., Vafa, C.: C = 1 string as the topological theory of the conifold. Nucl. Phys. B 453, 121 (1995)
22.
go back to reference Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996. Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser, Boston (1998) Givental, A.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics, Kyoto, 1996. Progress in Mathematics, vol. 160, pp. 141–175. Birkhäuser, Boston (1998)
24.
go back to reference Hori, K., Vafa, C.: Mirror symmetry. arXiv: hep-th/0002222 Hori, K., Vafa, C.: Mirror symmetry. arXiv: hep-th/0002222
25.
go back to reference Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003) Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror symmetry. Clay Mathematics Monographs, vol. 1. American Mathematical Society, Providence (2003)
26.
go back to reference Higashijima, K., Itou, E., Nitta, M.: Normal coordinates in Kähler manifolds and the background field method. Progr. Theor. Phys. 108(1), 185–202 Higashijima, K., Itou, E., Nitta, M.: Normal coordinates in Kähler manifolds and the background field method. Progr. Theor. Phys. 108(1), 185–202
27.
go back to reference Hosono, S.: BCOV ring and holomorphic anomaly equation. arXiv:0810.4795 Hosono, S.: BCOV ring and holomorphic anomaly equation. arXiv:0810.4795
28.
go back to reference Hosono, S., Konishi, Y.: Higher genus Gromov-Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau 3-folds. Adv. Theor. Math. Phys. 13(2), 463–495 (2009) MathSciNetCrossRefMATH Hosono, S., Konishi, Y.: Higher genus Gromov-Witten invariants of the Grassmannian, and the Pfaffian Calabi-Yau 3-folds. Adv. Theor. Math. Phys. 13(2), 463–495 (2009) MathSciNetCrossRefMATH
29.
go back to reference Huang, M.-x., Klemm, A.: Holomorphic anomaly in Gauge theories and matrix models. JHEP 0709, 054 (2007) Huang, M.-x., Klemm, A.: Holomorphic anomaly in Gauge theories and matrix models. JHEP 0709, 054 (2007)
30.
go back to reference Huang, M.-x., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi-Yau, modularity and boundary conditions. hep-th/0612125 Huang, M.-x., Klemm, A., Quackenbush, S.: Topological string theory on compact Calabi-Yau, modularity and boundary conditions. hep-th/0612125
31.
go back to reference Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms, the moduli space of curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995) CrossRef Kaneko, M., Zagier, D.: A generalized Jacobi theta function and quasimodular forms, the moduli space of curves. In: Dijkgraaf, R., Faber, C., van der Geer, G. (eds.) The Moduli Space of Curves. Progress in Mathematics, vol. 129, pp. 165–172. Birkhäuser, Boston (1995) CrossRef
32.
go back to reference Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arxiv: hep-th/9906046 Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. arxiv: hep-th/9906046
34.
35.
go back to reference Morrison, D.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993) CrossRefMATH Morrison, D.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993) CrossRefMATH
36.
go back to reference Popa, A.: The genus one Gromov–Witten invariants of Calabi–Yau complete intersections. Trans. AMS 365(3), 1149–1181 (2013) CrossRefMATH Popa, A.: The genus one Gromov–Witten invariants of Calabi–Yau complete intersections. Trans. AMS 365(3), 1149–1181 (2013) CrossRefMATH
39.
go back to reference Witten, E.: Quantum background independence in string theory. arixv: hep-th/9306122 Witten, E.: Quantum background independence in string theory. arixv: hep-th/9306122
40.
go back to reference Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. J. High Energy Phys. 047(7), 20 (2004) MathSciNet Yamaguchi, S., Yau, S.-T.: Topological string partition functions as polynomials. J. High Energy Phys. 047(7), 20 (2004) MathSciNet
41.
go back to reference Zhou, J.: Differential rings from special Kähler geometry. arXiv:1310.3555 Zhou, J.: Differential rings from special Kähler geometry. arXiv:1310.3555
42.
go back to reference Zhou, J.: Polynomial Structure of Topological String Partition Functions. arxiv: 1501.00451 Zhou, J.: Polynomial Structure of Topological String Partition Functions. arxiv: 1501.00451
43.
go back to reference Zinger, A.: The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces. J. Am. Math. Soc. 22(3), 691–737 (2009) Zinger, A.: The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces. J. Am. Math. Soc. 22(3), 691–737 (2009)
44.
go back to reference Zinger, A.: Standard vs. reduced genus-one Gromov–Witten invariants. Geom. Top. 12(2), 1203–1241 (2008) Zinger, A.: Standard vs. reduced genus-one Gromov–Witten invariants. Geom. Top. 12(2), 1203–1241 (2008)
Metadata
Title
Lectures on BCOV Holomorphic Anomaly Equations
Authors
Atsushi Kanazawa
Jie Zhou
Copyright Year
2015
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-2830-9_13

Premium Partner