Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

09-03-2020 | Original Article | Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020

Legal public opinion news abstractive summarization by incorporating topic information

Journal:
International Journal of Machine Learning and Cybernetics > Issue 9/2020
Authors:
Yuxin Huang, Zhengtao Yu, Junjun Guo, Zhiqiang Yu, Yantuan Xian
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Automatically generate accurate summaries from legal public opinion news can help readers to grasp the main ideas of news quickly. Although many improved sequence-to-sequence models have been proposed for the abstractive text summarization task, these approaches confront two challenges when addressing domain-specific summarization task: (1) the appropriate selection of domain knowledge; (2) the effective manner of integrating domain knowledge into summarization model. In order to tackle the above challenges, this paper selects the pre-training topic information as the legal domain knowledge, which is then integrated into the sequence-to-sequence model to improve the performance of public opinion news summarization. Concretely, two kinds of topic information are utilized: first, the topic words which denote the main aspects of the source document are encoded to guide the decoding process. Furthermore, the predicted output is forced to have a similar topic probability distribution with the source document. We evaluate our model on a large dataset of legal public opinion news collected from micro-blog, and the experimental results show that the proposed model outperforms existing baseline systems under the rouge metrics. To the best of our knowledge, this work represents the first attempt in the legal public opinion domain for text summarization task.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2020

International Journal of Machine Learning and Cybernetics 9/2020 Go to the issue