Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

LEMONS: Listenable Explanations for Music recOmmeNder Systems

Authors : Alessandro B. Melchiorre, Verena Haunschmid, Markus Schedl, Gerhard Widmer

Published in: Advances in Information Retrieval

Publisher: Springer International Publishing

Abstract

Although current music recommender systems suggest new tracks to their users, they do not provide listenable explanations of why a user should listen to them. LEMONS (Demonstration video: https://​youtu.​be/​giSPrPnZ7mc) is a new system that addresses this gap by (1) adopting a deep learning approach to generate audio content-based recommendations from the audio tracks and (2) providing listenable explanations based on the time-source segmentation of the recommended tracks using the recently proposed audioLIME.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
2
Details about training and architecture can be found in our GitHub repository.
 
Literature
2.
go back to reference Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338. Association for Computing Machinery (2020) Balog, K., Radlinski, F.: Measuring recommendation explanation quality: the conflicting goals of explanations. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 329–338. Association for Computing Machinery (2020)
3.
go back to reference Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020) CrossRef Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020) CrossRef
4.
go back to reference Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retrieval 14(1), 1–101 (2020) MathSciNetCrossRef Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. Found. Trends Inf. Retrieval 14(1), 1–101 (2020) MathSciNetCrossRef
5.
go back to reference Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 83–92. Association for Computing Machinery (2014) Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 83–92. Association for Computing Machinery (2014)
6.
go back to reference Tsukuda, K., Goto, M.: Explainable recommendation for repeat consumption. In: 14th ACM Conference on Recommender Systems, pp. 462–467. Association for Computing Machinery (2020) Tsukuda, K., Goto, M.: Explainable recommendation for repeat consumption. In: 14th ACM Conference on Recommender Systems, pp. 462–467. Association for Computing Machinery (2020)
7.
go back to reference Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation share on. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. Association for Computing Machinery (2017) Li, P., Wang, Z., Ren, Z., Bing, L., Lam, W.: Neural rating regression with abstractive tips generation for recommendation share on. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 345–354. Association for Computing Machinery (2017)
8.
go back to reference Chang, S., Harper, F.M., Terveen, L.G.: Crowd-based personalized natural language explanations for recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 175–182. Association for Computing Machinery (2016) Chang, S., Harper, F.M., Terveen, L.G.: Crowd-based personalized natural language explanations for recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 175–182. Association for Computing Machinery (2016)
9.
go back to reference Chen, X., et al.: Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. Association for Computing Machinery (2019) Chen, X., et al.: Personalized fashion recommendation with visual explanations based on multimodal attention network: towards visually explainable recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 765–774. Association for Computing Machinery (2019)
10.
go back to reference Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: User preferences for hybrid explanations. In: Proceedings of the 11th ACM Conference on Recommender Systems, pp. 84–88. Association for Computing Machinery (2017) Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., Getoor, L.: User preferences for hybrid explanations. In: Proceedings of the 11th ACM Conference on Recommender Systems, pp. 84–88. Association for Computing Machinery (2017)
11.
go back to reference Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. Association for Computing Machinery (2000) Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work, pp. 241–250. Association for Computing Machinery (2000)
12.
go back to reference Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. Association for Computing Machinery (2009) Vig, J., Sen, S., Riedl, J.: Tagsplanations: explaining recommendations using tags. In: Proceedings of the 14th International Conference on Intelligent User Interfaces, pp. 47–56. Association for Computing Machinery (2009)
13.
go back to reference Green, S.J., et al.: Generating transparent, steerable recommendations from textual descriptions of items. In: Proceedings of the 3rd ACM Conference on Recommender Systems, pp. 329–338. Association for Computing Machinery (2009) Green, S.J., et al.: Generating transparent, steerable recommendations from textual descriptions of items. In: Proceedings of the 3rd ACM Conference on Recommender Systems, pp. 329–338. Association for Computing Machinery (2009)
14.
go back to reference Millecamp, M., Htun, N.N., Conati, C., Verbert, K.: To explain or not to explain: the effects of personal characteristics when explaining music recommendations. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 397–407. Association for Computing Machinery (2019) Millecamp, M., Htun, N.N., Conati, C., Verbert, K.: To explain or not to explain: the effects of personal characteristics when explaining music recommendations. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 397–407. Association for Computing Machinery (2019)
15.
go back to reference Sharma, A., Cosley, D.: Do social explanations work? Studying and modeling the effects of social explanations in recommender systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1133–1144. Association for Computing Machinery (2013) Sharma, A., Cosley, D.: Do social explanations work? Studying and modeling the effects of social explanations in recommender systems. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1133–1144. Association for Computing Machinery (2013)
16.
go back to reference Zhao, G., et al.: Personalized reason generation for explainable song recommendation. ACM Trans. Intell. Syst. Technol. 10(4), 1–21 (2019) CrossRef Zhao, G., et al.: Personalized reason generation for explainable song recommendation. ACM Trans. Intell. Syst. Technol. 10(4), 1–21 (2019) CrossRef
17.
go back to reference Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336. Association for the Advancement of Artificial Intelligence Press (2019) Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.S.: Explainable reasoning over knowledge graphs for recommendation. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336. Association for the Advancement of Artificial Intelligence Press (2019)
18.
go back to reference Haunschmid, V., Manilow, E., Widmer, G.: audioLIME: listenable explanations using source separation. In: 13th International Workshop on Machine Learning and Music, pp. 20–24 (2020) Haunschmid, V., Manilow, E., Widmer, G.: audioLIME: listenable explanations using source separation. In: 13th International Workshop on Machine Learning and Music, pp. 20–24 (2020)
19.
go back to reference Won, M., Ferraro, A., Bogdanov, D., Serra, X.: Evaluation of CNN-based automatic music tagging models. In: Proceedings of 17th Sound and Music Computing (2020) Won, M., Ferraro, A., Bogdanov, D., Serra, X.: Evaluation of CNN-based automatic music tagging models. In: Proceedings of 17th Sound and Music Computing (2020)
20.
go back to reference Choi, K., Fazekas, G., Sandler, M.: Automatic tagging using deep convolutional neural networks. In: Proceedings of the 17th International Conference on Music Information Retrieval (ISMIR 2016), pp. 805–811 (2016) Choi, K., Fazekas, G., Sandler, M.: Automatic tagging using deep convolutional neural networks. In: Proceedings of the 17th International Conference on Music Information Retrieval (ISMIR 2016), pp. 805–811 (2016)
21.
go back to reference Pan, R., et al.: One-class collaborative filtering. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 502–511. Institute of Electrical and Electronics Engineers (2008) Pan, R., et al.: One-class collaborative filtering. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 502–511. Institute of Electrical and Electronics Engineers (2008)
22.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Machinery (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. Association for Computing Machinery (2016)
24.
go back to reference Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), pp. 591–596. University of Miami (2011) Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset. In: Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), pp. 591–596. University of Miami (2011)
25.
go back to reference Rafii, Z., Liutkus, A., Stöter, F.R., Mimilakis, S.I., Bittner, R.: MUSDB18 - A Corpus for Music Separation (2017) Rafii, Z., Liutkus, A., Stöter, F.R., Mimilakis, S.I., Bittner, R.: MUSDB18 - A Corpus for Music Separation (2017)
26.
go back to reference Hennequin, R., Khlif, A., Voituret, F., Moussallam, M.: Spleeter: a fast and efficient music source separation tool with pre-trained models. J. Open Source Softw. 5(50), 2154 (2020) CrossRef Hennequin, R., Khlif, A., Voituret, F., Moussallam, M.: Spleeter: a fast and efficient music source separation tool with pre-trained models. J. Open Source Softw. 5(50), 2154 (2020) CrossRef
Metadata
Title
LEMONS: Listenable Explanations for Music recOmmeNder Systems
Authors
Alessandro B. Melchiorre
Verena Haunschmid
Markus Schedl
Gerhard Widmer
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-72240-1_60