Skip to main content
Top

2020 | OriginalPaper | Chapter

Leveraging Anomaly Detection for Proactive Application Monitoring

Author : Shyam Zacharia

Published in: Artificial Intelligence XXXVII

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Anomaly detection is one of the popular research fields in Machine Learning. Also, this is one of the key techniques in system and application monitoring in Industry. Anomaly detection comprises of outlier detection and identifying novelty from the data - it is a process to understand the deviation of an observation from existing observations [12] and identifying the new observations. Carrying out anomaly detection in an enterprise application is a challenge as there are complex processes to gather and analyze functional and non-functional logs of unlabeled data. In this paper we are proposing an unsupervised learning process with log featurization incorporating time window to detect outliers and novel errors from enterprise application logs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16CrossRef Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-11723-8_​16CrossRef
5.
go back to reference Breunig, M., Kriegel, H., Ng, R., Sander, J.: LOF. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD ‘00 (2000) Breunig, M., Kriegel, H., Ng, R., Sander, J.: LOF. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data - SIGMOD ‘00 (2000)
7.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
8.
go back to reference Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Detecting large-scale system problems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles - SOSP ‘09 (2009) Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.: Detecting large-scale system problems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles - SOSP ‘09 (2009)
9.
go back to reference Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining - KDD ‘05 (2005) Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining - KDD ‘05 (2005)
10.
go back to reference Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems logs to diagnose performance problems. NSDI, pp. 353–366 (2012) Nagaraj, K., Killian, C., Neville, J.: Structured comparative analysis of systems logs to diagnose performance problems. NSDI, pp. 353–366 (2012)
12.
13.
go back to reference Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)MATH Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)MATH
14.
go back to reference Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019) Zhao, Y., Nasrullah, Z., Li, Z.: PyOD: a python toolbox for scalable outlier detection. J. Mach. Learn. Res. 20(96), 1–7 (2019)
15.
go back to reference Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443–1471 (2001)CrossRef Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., Williamson, R.: Estimating the support of a high-dimensional distribution. Neural Comput. 13, 1443–1471 (2001)CrossRef
16.
go back to reference Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–452 (2008) Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-dimensional data. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 444–452 (2008)
17.
go back to reference He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24, 1641–1650 (2003)CrossRef He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recogn. Lett. 24, 1641–1650 (2003)CrossRef
18.
go back to reference Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 157–166 (2005) Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 157–166 (2005)
19.
go back to reference Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): aa fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59–63 (2012) Goldstein, M., Dengel, A.: Histogram-based outlier score (hbos): aa fast unsupervised anomaly detection algorithm. KI-2012: Poster and Demo Track, pp. 59–63 (2012)
21.
go back to reference Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 15–27 (2002) Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 15–27 (2002)
22.
go back to reference Hardin, J., Rocke, D.: Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44, 625–638 (2004)MathSciNetCrossRef Hardin, J., Rocke, D.: Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput. Stat. Data Anal. 44, 625–638 (2004)MathSciNetCrossRef
23.
go back to reference Shyu, M.L., Chen, S.C., Sarinnapakorn, K. and Chang, L.: A novel anomaly detection scheme based on principal component classifier. Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering (2003) Shyu, M.L., Chen, S.C., Sarinnapakorn, K. and Chang, L.: A novel anomaly detection scheme based on principal component classifier. Miami Univ Coral Gables Fl Dept of Electrical and Computer Engineering (2003)
24.
go back to reference Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)CrossRef Hanley, J., McNeil, B.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982)CrossRef
25.
go back to reference Craswell, N.: Precision at n. Encyclopedia of Database Systems, pp. 2127–2128 (2009) Craswell, N.: Precision at n. Encyclopedia of Database Systems, pp. 2127–2128 (2009)
Metadata
Title
Leveraging Anomaly Detection for Proactive Application Monitoring
Author
Shyam Zacharia
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63799-6_29

Premium Partner