Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Lewis Acidic Solutions: H↔H Fragilization

Author : Prof. Dr. Chang Q Sun

Published in: Solvation Dynamics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solvation dissolves the HX into an H+ and an X. The H+ bonds to a H2O to form a firm H3O+ and a H↔H anti − HB point breaker. The H–O bond due H3O+ is 3% shorter and the associated O:H nonbond is 60% longer than normal. The H↔H compression shortens its nearest O:H nonbond by 11% and lengthens the H–O by 4%. The X point polarizer shortens the H–O bond and stiffens its phonon but relax the O:H nonbond oppositely in the supersolid hydration shell. The X solute capability of bond transition follows the I > Br > Cl order in the form of fx(C) ∝ 1 − exp(−C/C0) towards saturation because of the involvement of the X↔X interaction that weakens the hydration-shell electric field at higher concentrations. However, the H+ neither hops or tunnels freely nor polarize its neighbors, fH(C) = 0. The H↔H has the same effect of heating on the surface stress and solution viscosity disruption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903) S. Arrhenius, Development of the theory of electrolytic Dissociation. Nobel Lecture, (1903)
2.
go back to reference J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRef J. Brönsted, Part III. Neutral salt and activity effects. The theory of acid and basic catalysis. Trans. Faraday Soc. 24, 630–640 (1928)CrossRef
3.
go back to reference T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRef T.M. Lowry, I.J. Faulkner, CCCXCIX.—Studies of dynamic isomerism. Part XX. Amphoteric solvents as catalysts for the mutarotation of the sugars. J. Chem. Soc. Trans. 127, 2883–2887 (1925)CrossRef
4.
5.
go back to reference C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRef C.D. Cappa, J.D. Smith, K.R. Wilson, B.M. Messer, M.K. Gilles, R.C. Cohen, R.J. Saykally, Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109(15), 7046–7052 (2005)PubMedCrossRef
6.
go back to reference W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theory Comput. 12(10), 5117–5131 (2016)PubMedCrossRef W.J. Glover, B.J. Schwartz, Short-range electron correlation stabilizes noncavity solvation of the hydrated electron. J. Chem. Theory Comput. 12(10), 5117–5131 (2016)PubMedCrossRef
7.
go back to reference T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRef T. Iitaka, T. Ebisuzaki, Methane hydrate under high pressure. Phys. Rev. B 68(17), 172105 (2003)CrossRef
8.
go back to reference D. Liu, G. Ma, L.M. Levering, H.C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)CrossRef D. Liu, G. Ma, L.M. Levering, H.C. Allen, Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J. Phys. Chem. B 108(7), 2252–2260 (2004)CrossRef
9.
go back to reference Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRef Y. Marcus, Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)PubMedCrossRef
10.
go back to reference J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRef J.D. Smith, R.J. Saykally, P.L. Geissler, The effects of dissolved halide anions on hydrogen bonding in liquid water. J. Am. Chem. Soc. 129(45), 13847–13856 (2007)PubMedCrossRef
11.
go back to reference J. Zhang, J.-L. Kuo, T. Iitaka, First principles molecular dynamics study of filled ice hydrogen hydrate. J. Chem. Phys. 137(8), 084505 (2012)PubMedCrossRef J. Zhang, J.-L. Kuo, T. Iitaka, First principles molecular dynamics study of filled ice hydrogen hydrate. J. Chem. Phys. 137(8), 084505 (2012)PubMedCrossRef
12.
go back to reference B.L. Bhargava, Y. Yasaka, M.L. Klein, Computational studies of room temperature ionic liquid-water mixtures. Chem. Commun. 47(22), 6228–6241 (2011)CrossRef B.L. Bhargava, Y. Yasaka, M.L. Klein, Computational studies of room temperature ionic liquid-water mixtures. Chem. Commun. 47(22), 6228–6241 (2011)CrossRef
13.
go back to reference S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Ionic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chem. Commun. 49(79), 8988–8990 (2013)CrossRef S. Saita, Y. Kohno, N. Nakamura, H. Ohno, Ionic liquids showing phase separation with water prepared by mixing hydrophilic and polar amino acid ionic liquids. Chem. Commun. 49(79), 8988–8990 (2013)CrossRef
14.
go back to reference E.S. Stoyanov, I.V. Stoyanova, C.A. Reed, The unique nature of H+ in water. Chem. Sci. 2(3), 462–472 (2011)CrossRef E.S. Stoyanov, I.V. Stoyanova, C.A. Reed, The unique nature of H+ in water. Chem. Sci. 2(3), 462–472 (2011)CrossRef
15.
16.
go back to reference Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefPubMed Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)CrossRefPubMed
17.
go back to reference H. Chen, W. Gan, B.H. Wu, D. Wu, Y. Guo, H.F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phy. Chem. B 109(16), 8053–8063 (2005)CrossRef H. Chen, W. Gan, B.H. Wu, D. Wu, Y. Guo, H.F. Wang, Determination of structure and energetics for Gibbs surface adsorption layers of binary liquid mixture 1. Acetone + water. J. Phy. Chem. B 109(16), 8053–8063 (2005)CrossRef
18.
go back to reference M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRef M.E. Tuckerman, D. Marx, M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417(6892), 925–929 (2002)PubMedCrossRef
19.
go back to reference S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedCrossRef S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)PubMedCrossRef
20.
go back to reference M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRef M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Ultrafast 2D IR spectroscopy of the excess proton in liquid water. Science 350(6256), 78–82 (2015)PubMedCrossRef
21.
go back to reference F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the zundel cation H5 O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)PubMedCrossRef F. Dahms, R. Costard, E. Pines, B.P. Fingerhut, E.T. Nibbering, T. Elsaesser, The hydrated excess proton in the zundel cation H5 O2 (+): The role of ultrafast solvent fluctuations. Angew. Chem. Int. Ed. Engl. 55(36), 10600–10605 (2016)PubMedCrossRef
22.
go back to reference J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRef J.C. Li, A.I. Kolesnikov, Neutron spectroscopic investigation of dynamics of water ice. J. Mol. Liq. 100(1), 1–39 (2002)CrossRef
23.
go back to reference I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRef I. Michalarias, I. Beta, R. Ford, S. Ruffle, J.C. Li, Inelastic neutron scattering studies of water in DNA. Appl. Phys. A Mater. Sci. Process. 74, s1242–s1244 (2002)CrossRef
24.
go back to reference P.M. Kiefer, J.T. Hynes, Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23(7), 632–646 (2010)CrossRef P.M. Kiefer, J.T. Hynes, Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23(7), 632–646 (2010)CrossRef
25.
go back to reference S. Daschakraborty, P.M. Kiefer, Y. Miller, Y. Motro, D. Pines, E. Pines, J.T. Hynes, Reaction mechanism for direct proton transfer from carbonic acid to a strong base in aqueous solution I: Acid and base coordinate and charge dynamics. J. Phys. Chem. B 120(9), 2271–2280 (2016)PubMedPubMedCentralCrossRef S. Daschakraborty, P.M. Kiefer, Y. Miller, Y. Motro, D. Pines, E. Pines, J.T. Hynes, Reaction mechanism for direct proton transfer from carbonic acid to a strong base in aqueous solution I: Acid and base coordinate and charge dynamics. J. Phys. Chem. B 120(9), 2271–2280 (2016)PubMedPubMedCentralCrossRef
26.
go back to reference N.B.-M. Kalish, E. Shandalov, V. Kharlanov, D. Pines, E. Pines, Apparent stoichiometry of water in proton hydration and proton dehydration reactions in CH3CN/H2O solutions. J. Phys. Chem. A 115(16), 4063–4075 (2011)PubMedCrossRef N.B.-M. Kalish, E. Shandalov, V. Kharlanov, D. Pines, E. Pines, Apparent stoichiometry of water in proton hydration and proton dehydration reactions in CH3CN/H2O solutions. J. Phys. Chem. A 115(16), 4063–4075 (2011)PubMedCrossRef
27.
go back to reference D. Borgis, G. Tarjus, H. Azzouz, An adiabatic dynamical simulation study of the Zundel polarization of strongly H-bonded complexes in solution. J. Chem. Phys. 97(2), 1390–1400 (1992)CrossRef D. Borgis, G. Tarjus, H. Azzouz, An adiabatic dynamical simulation study of the Zundel polarization of strongly H-bonded complexes in solution. J. Chem. Phys. 97(2), 1390–1400 (1992)CrossRef
28.
go back to reference R. Vuilleumier, D. Borgis, Quantum dynamics of an excess proton in water using an extended empirical valence-bond Hamiltonian. J. Phys. Chem. B 102(22), 4261–4264 (1998)CrossRef R. Vuilleumier, D. Borgis, Quantum dynamics of an excess proton in water using an extended empirical valence-bond Hamiltonian. J. Phys. Chem. B 102(22), 4261–4264 (1998)CrossRef
29.
go back to reference R. Vuilleumier, D. Borgis, Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111(9), 4251–4266 (1999)CrossRef R. Vuilleumier, D. Borgis, Transport and spectroscopy of the hydrated proton: a molecular dynamics study. J. Chem. Phys. 111(9), 4251–4266 (1999)CrossRef
30.
go back to reference K. Ando, J.T. Hynes, Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101(49), 10464–10478 (1997)CrossRef K. Ando, J.T. Hynes, Molecular mechanism of HCl acid ionization in water: Ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101(49), 10464–10478 (1997)CrossRef
31.
go back to reference K. Ando, J.T. Hynes, HF acid ionization in water: the first step. Faraday Discuss. 102, 435–441 (1995)CrossRef K. Ando, J.T. Hynes, HF acid ionization in water: the first step. Faraday Discuss. 102, 435–441 (1995)CrossRef
32.
go back to reference D. Borgis, J.T. Hynes, Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94(5), 3619–3628 (1991)CrossRef D. Borgis, J.T. Hynes, Molecular-dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94(5), 3619–3628 (1991)CrossRef
33.
go back to reference M.I. Bernal-Uruchurtu, R. Hernández-Lamoneda, K.C. Janda, On the unusual properties of halogen bonds: A detailed ab initio study of X2 − (H2O) 1–5 clusters (X = Cl and Br). J. Phys. Chem. A 113(19), 5496–5505 (2009)PubMedCrossRef M.I. Bernal-Uruchurtu, R. Hernández-Lamoneda, K.C. Janda, On the unusual properties of halogen bonds: A detailed ab initio study of X2 − (H2O) 1–5 clusters (X = Cl and Br). J. Phys. Chem. A 113(19), 5496–5505 (2009)PubMedCrossRef
34.
go back to reference H. Saint-Martin, J. Hernández-Cobos, M.I. Bernal-Uruchurtu, I. Ortega-Blake, H.J. Berendsen, A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J. Chem. Phys. 113(24), 10899–10912 (2000)CrossRef H. Saint-Martin, J. Hernández-Cobos, M.I. Bernal-Uruchurtu, I. Ortega-Blake, H.J. Berendsen, A mobile charge densities in harmonic oscillators (MCDHO) molecular model for numerical simulations: the water–water interaction. J. Chem. Phys. 113(24), 10899–10912 (2000)CrossRef
35.
go back to reference C. de Grotthuss, Sur la Décomposition de l’eau et des Corps Qu’elle Tient en Dissolution à l’aide de l’électricité. Galvanique Ann Chim, LVIII: 54–74, (1806) C. de Grotthuss, Sur la Décomposition de l’eau et des Corps Qu’elle Tient en Dissolution à l’aide de l’électricité. Galvanique Ann Chim, LVIII: 54–74, (1806)
36.
go back to reference A. Hassanali, F. Giberti, J. Cuny, T.D. Kuhne, M. Parrinello, Proton transfer through the water gossamer. Proc. Natl. Acad. Sci. U.S.A. 110(34), 13723–13728 (2013)PubMedPubMedCentralCrossRef A. Hassanali, F. Giberti, J. Cuny, T.D. Kuhne, M. Parrinello, Proton transfer through the water gossamer. Proc. Natl. Acad. Sci. U.S.A. 110(34), 13723–13728 (2013)PubMedPubMedCentralCrossRef
37.
go back to reference A.E. Stearn, H. Eyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5(2), 113–124 (1937)CrossRef A.E. Stearn, H. Eyring, The deduction of reaction mechanisms from the theory of absolute rates. J. Chem. Phys. 5(2), 113–124 (1937)CrossRef
38.
go back to reference M.L. Huggins, Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40(6), 723–731 (1936)CrossRef M.L. Huggins, Hydrogen bridges in ice and liquid water. J. Phys. Chem. 40(6), 723–731 (1936)CrossRef
39.
go back to reference G. Wannier, Die Beweglichkeit des Wasserstoff-und Hydroxylions in wäßriger Lösung. I. Annalen der Physik 416(6), 545–568 (1935)CrossRef G. Wannier, Die Beweglichkeit des Wasserstoff-und Hydroxylions in wäßriger Lösung. I. Annalen der Physik 416(6), 545–568 (1935)CrossRef
40.
go back to reference N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5), 456–462 (1995)CrossRef N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5), 456–462 (1995)CrossRef
41.
go back to reference M. Eigen, Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. Engl. 3(1), 1–19 (1964)CrossRef M. Eigen, Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Part I: Elementary processes. Angew. Chem. Int. Ed. Engl. 3(1), 1–19 (1964)CrossRef
42.
go back to reference G. Zundel, P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent developments in theory and experiments, vol. 2, 1976 G. Zundel, P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond. Recent developments in theory and experiments, vol. 2, 1976
43.
go back to reference J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRef J.A. Fournier, W.B. Carpenter, N.H.C. Lewis, A. Tokmakoff, Broadband 2D IR spectroscopy reveals dominant asymmetric H5O2+ proton hydration structures in acid solutions. Nat. Chem. 10, 932–937 (2018)PubMedCrossRef
44.
go back to reference X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRef X. Zhang, Y. Zhou, Y. Gong, Y. Huang, C. Sun, Resolving H(Cl, Br, I) capabilities of transforming solution hydrogen-bond and surface-stress. Chem. Phys. Lett. 678, 233–240 (2017)CrossRef
45.
go back to reference C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRef C.Q. Sun, J. Chen, X. Liu, X. Zhang, Y. Huang, (Li, Na, K)OH hydration bonding thermodynamics: Solution self-heating. Chem. Phys. Lett. 696, 139–143 (2018)CrossRef
46.
go back to reference C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. vol. 113. (Springer, Heidelberg, 2016), 494pp C.Q. Sun, Y. Sun, The Attribute of Water: Single Notion, Multiple Myths. Springer Ser. Chem. Phys. vol. 113. (Springer, Heidelberg, 2016), 494pp
47.
go back to reference H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 24, 133–140 (1957)CrossRef H.S. Frank, W.Y. Wen, Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc. 24, 133–140 (1957)CrossRef
48.
go back to reference L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRef L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)CrossRef
49.
go back to reference S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. phys. 113(22), 10073–10090 (2000)CrossRef S.A. Harich, D.W.H. Hwang, X. Yang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of H2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. phys. 113(22), 10073–10090 (2000)CrossRef
50.
go back to reference S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)CrossRef S.A. Harich, X. Yang, D.W. Hwang, J.J. Lin, X. Yang, R.N. Dixon, Photodissociation of D2O at 121.6 nm: A state-to-state dynamical picture. J. Chem. Phys. 114(18), 7830–7837 (2001)CrossRef
51.
go back to reference Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRef Q. Zeng, T. Yan, K. Wang, Y. Gong, Y. Zhou, Y. Huang, C.Q. Sun, B. Zou, Compression icing of room-temperature NaX solutions (X = F, Cl, Br, I). Phys. Chem. Chem. Phys. 18(20), 14046–14054 (2016)PubMedCrossRef
52.
go back to reference D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)CrossRef D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)CrossRef
53.
go back to reference C. Drechsel-Grau, D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Phys. Chem. Chem. Phys. 19(4), 2623–2635 (2017)PubMedCrossRef C. Drechsel-Grau, D. Marx, Collective proton transfer in ordinary ice: local environments, temperature dependence and deuteration effects. Phys. Chem. Chem. Phys. 19(4), 2623–2635 (2017)PubMedCrossRef
54.
go back to reference J.M. Heuft, E.J. Meijer, Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119(22), 11788–11791 (2003)CrossRef J.M. Heuft, E.J. Meijer, Density functional theory based molecular-dynamics study of aqueous chloride solvation. J. Chem. Phys. 119(22), 11788–11791 (2003)CrossRef
55.
go back to reference J.M. Heuft, E.J. Meijer, A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. Phys. Chem. Chem. Phys. 8(26), 3116–3123 (2006)PubMedCrossRef J.M. Heuft, E.J. Meijer, A density functional theory based study of the microscopic structure and dynamics of aqueous HCl solutions. Phys. Chem. Chem. Phys. 8(26), 3116–3123 (2006)PubMedCrossRef
56.
go back to reference S. Raugei, M.L. Klein, An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116(1), 196–202 (2002)CrossRef S. Raugei, M.L. Klein, An ab initio study of water molecules in the bromide ion solvation shell. J. Chem. Phys. 116(1), 196–202 (2002)CrossRef
57.
go back to reference M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)CrossRef M. Tuckerman, K. Laasonen, M. Sprik, M. Parrinello, Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103(1), 150–161 (1995)CrossRef
58.
go back to reference D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)CrossRef D. Hollas, O. Svoboda, P. Slavíček, Fragmentation of HCl–water clusters upon ionization: Non-adiabatic ab initio dynamics study. Chem. Phys. Lett. 622, 80–85 (2015)CrossRef
59.
go back to reference R. Shi, K. Li, Y. Su, L. Tang, X. Huang, L. Sai, J. Zhao, Revisit the landscape of protonated water clusters H + (H2O) n with n = 10–17: An ab initio global search. J. Chem. Phys. 148(17), 174305 (2018)PubMedCrossRef R. Shi, K. Li, Y. Su, L. Tang, X. Huang, L. Sai, J. Zhao, Revisit the landscape of protonated water clusters H + (H2O) n with n = 10–17: An ab initio global search. J. Chem. Phys. 148(17), 174305 (2018)PubMedCrossRef
60.
go back to reference C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)PubMedCrossRef C.T. Wolke, J.A. Fournier, L.C. Dzugan, M.R. Fagiani, T.T. Odbadrakh, H. Knorke, K.D. Jordan, A.B. McCoy, K.R. Asmis, M.A. Johnson, Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354(6316), 1131–1135 (2016)PubMedCrossRef
61.
go back to reference O. Teschke, J. Roberto de Castro, J.F. Valente Filho, D.M. Soares, Hydrated excess proton raman spectral densities probed in floating water bridges. ACS Omega. 3(10), 13977–13983 (2018)PubMedCrossRefPubMedCentral O. Teschke, J. Roberto de Castro, J.F. Valente Filho, D.M. Soares, Hydrated excess proton raman spectral densities probed in floating water bridges. ACS Omega. 3(10), 13977–13983 (2018)PubMedCrossRefPubMedCentral
62.
63.
go back to reference X. Kong, A. Waldner, F. Orlando, L. Artiglia, T. Huthwelker, M. Ammann, T. Bartels-Rausch, Coexistence of physisorbed and solvated HCl at warm ice surfaces. J. Phys. Chem. Lett. 8(19), 4757–4762 (2017)PubMedCrossRef X. Kong, A. Waldner, F. Orlando, L. Artiglia, T. Huthwelker, M. Ammann, T. Bartels-Rausch, Coexistence of physisorbed and solvated HCl at warm ice surfaces. J. Phys. Chem. Lett. 8(19), 4757–4762 (2017)PubMedCrossRef
64.
go back to reference T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, J.C. Hemminger, Does nitric acid dissociate at the aqueous solution surface? J. Phys. Chem. C 115(43), 21183–21190 (2011)CrossRef T. Lewis, B. Winter, A.C. Stern, M.D. Baer, C.J. Mundy, D.J. Tobias, J.C. Hemminger, Does nitric acid dissociate at the aqueous solution surface? J. Phys. Chem. C 115(43), 21183–21190 (2011)CrossRef
65.
go back to reference K. Dong, S. Zhang, Hydrogen bonds: a structural insight into ionic liquids. Chem. A Eur. J. 18(10), 2748–2761 (2012)CrossRef K. Dong, S. Zhang, Hydrogen bonds: a structural insight into ionic liquids. Chem. A Eur. J. 18(10), 2748–2761 (2012)CrossRef
66.
go back to reference K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)CrossRef K. Dong, S. Zhang, Q. Wang, A new class of ion-ion interaction: Z-bond. Sci. China Chem. 58(3), 495–500 (2015)CrossRef
67.
go back to reference D.B. Wong, C.H. Giammanco, E.E. Fenn, M.D. Fayer, Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J. of Phys. Chem. B 117(2), 623–635 (2013)CrossRef D.B. Wong, C.H. Giammanco, E.E. Fenn, M.D. Fayer, Dynamics of isolated water molecules in a sea of ions in a room temperature ionic liquid. J. of Phys. Chem. B 117(2), 623–635 (2013)CrossRef
68.
go back to reference X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRef X. Zhang, Y. Xu, Y. Zhou, Y. Gong, Y. Huang, C.Q. Sun, HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress. Appl. Surf. Sci. 422, 475–481 (2017)CrossRef
69.
go back to reference X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRef X. Zhang, T. Yan, Y. Huang, Z. Ma, X. Liu, B. Zou, C.Q. Sun, Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys. Chem. Chem. Phys. 16(45), 24666–24671 (2014)PubMedCrossRef
70.
go back to reference Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRef Y. Gong, Y. Zhou, H. Wu, D. Wu, Y. Huang, C.Q. Sun, Raman spectroscopy of alkali halide hydration: hydrogen bond relaxation and polarization. J. Raman Spectrosc. 47(11), 1351–1359 (2016)CrossRef
71.
go back to reference Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRef Y. Zhou, D. Wu, Y. Gong, Z. Ma, Y. Huang, X. Zhang, C.Q. Sun, Base-hydration-resolved hydrogen-bond networking dynamics: Quantum point compression. J. Mol. Liq. 223, 1277–1283 (2016)CrossRef
72.
go back to reference M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: A molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)CrossRef M. Druchok, M. Holovko, Structural changes in water exposed to electric fields: A molecular dynamics study. J. Mol. Liq. 212, 969–975 (2015)CrossRef
73.
go back to reference C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)PubMedCrossRef C.Q. Sun, Perspective:Unprecedented O:⇔: O compression and H↔H fragilization in Lewis solutions. Phys. Chem. Chem. Phys. 21, 2234–2250 (2019)PubMedCrossRef
74.
go back to reference Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, O:H–O bond electrification in the aqueous YI solutions (Y = Na, K, Rb, Cs). Communicated, (2016) Y. Zhou, Y. Huang, Y. Gong, C.Q. Sun, O:H–O bond electrification in the aqueous YI solutions (Y = Na, K, Rb, Cs). Communicated, (2016)
75.
go back to reference J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phy. Rev. B 45(23), 13244–13249 (1992)CrossRef J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation-energy. Phy. Rev. B 45(23), 13244–13249 (1992)CrossRef
76.
go back to reference F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)CrossRef F. Ortmann, F. Bechstedt, W.G. Schmidt, Semiempirical van der Waals correction to the density functional description of solids and molecular structures. Phys. Rev. B 73(20), 205101 (2006)CrossRef
77.
go back to reference E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover, New York, 1980) E.B. Wilson, J.C. Decius, P.C. Cross, Molecular Vibrations (Dover, New York, 1980)
Metadata
Title
Lewis Acidic Solutions: H↔H Fragilization
Author
Prof. Dr. Chang Q Sun
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8441-7_4

Premium Partners