Skip to main content
Top

2024 | OriginalPaper | Chapter

Lichnerowicz-Type Laplacians in the Bochner Technique

Authors : Vladimir Rovenski, Sergey Stepanov, Irina Tsyganok

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the well-known monograph of A. Besse the following is written: the Bochner technique is a method of proving vanishing theorems for null space of a Laplace operator admitting a Weitzenböck decomposition and further of estimating its lowest nonzero eigenvalue. In this article, we consider a generalized form of the well-known Lichnerowicz Laplacian, show how the Bochner technique works for this operator and provide some its important examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alexandrova I.A., Mikeš J., Stepanov, S.E., Tsyganok I.I.: Liouville-type theorems in the theory of mappings of complete Riemannian manifolds, J. of Mathematical Sciences (N.Y.), 221:6 (2017), 737–744 Alexandrova I.A., Mikeš J., Stepanov, S.E., Tsyganok I.I.: Liouville-type theorems in the theory of mappings of complete Riemannian manifolds, J. of Mathematical Sciences (N.Y.), 221:6 (2017), 737–744
2.
go back to reference Alexandrova I.A., Stepanov S.E., Tsyganok I.I.: Liouville-type theorems for theories of Riemannian almost product structures and submersions, J. of Mathematical Sciences (N.Y.), 230:1 (2018), 1–9 Alexandrova I.A., Stepanov S.E., Tsyganok I.I.: Liouville-type theorems for theories of Riemannian almost product structures and submersions, J. of Mathematical Sciences (N.Y.), 230:1 (2018), 1–9
3.
go back to reference Amari S.-I.: Information geometry and its applications. Applied Math. Sciences, 194. Springer, 2016 Amari S.-I.: Information geometry and its applications. Applied Math. Sciences, 194. Springer, 2016
4.
go back to reference Barros A., Gomes J.N., Rebeiro E.: A note on rigidity of almost Ricci soliton, Archiv der Mathematik, 100, 481–490 (2013)MathSciNetCrossRef Barros A., Gomes J.N., Rebeiro E.: A note on rigidity of almost Ricci soliton, Archiv der Mathematik, 100, 481–490 (2013)MathSciNetCrossRef
5.
go back to reference Barros A., Batista R., Ribeiro jr. E.: Compact almost Ricci solitons with constant scalar curvature are gradient, Monatshefte für Mathematik, 174, 29–39 (2014) Barros A., Batista R., Ribeiro jr. E.: Compact almost Ricci solitons with constant scalar curvature are gradient, Monatshefte für Mathematik, 174, 29–39 (2014)
6.
go back to reference Berard P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. of the AMS, 1988, 19:2, 371–406MathSciNetCrossRef Berard P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited, Bull. of the AMS, 1988, 19:2, 371–406MathSciNetCrossRef
8.
go back to reference Bishop R.L., O’Neill B.: Manifolds of negative curvature. TAMS, 145 (1969), 1–9 Bishop R.L., O’Neill B.: Manifolds of negative curvature. TAMS, 145 (1969), 1–9
9.
go back to reference Böhm C., Wilking B.: Manifolds with positive curvature operators are space forms, Annals of Mathematics, 2008, 167, 1079–1097MathSciNetCrossRef Böhm C., Wilking B.: Manifolds with positive curvature operators are space forms, Annals of Mathematics, 2008, 167, 1079–1097MathSciNetCrossRef
10.
go back to reference Boucetta M.: Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on \(S^{n}\), Osaka J. Math., 2009, 46, 235–254MathSciNet Boucetta M.: Spectra and symmetric eigentensors of the Lichnerowicz Laplacian on \(S^{n}\), Osaka J. Math., 2009, 46, 235–254MathSciNet
11.
go back to reference Bourguignon J.-P.: Les variétés de dimension 4 á signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math., 1981, 63, 263–286MathSciNetCrossRef Bourguignon J.-P.: Les variétés de dimension 4 á signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math., 1981, 63, 263–286MathSciNetCrossRef
13.
go back to reference Calin O. and Chang D.-C.: Sub-Riemannian geometry. General theory and examples. Encyclopedia of Math. and its Applications, 126. Cambridge Univ. Press, 2009 Calin O. and Chang D.-C.: Sub-Riemannian geometry. General theory and examples. Encyclopedia of Math. and its Applications, 126. Cambridge Univ. Press, 2009
14.
go back to reference Caminha A., Souza P., Camargo F.: Complete foliations of space forms by hypersurfaces, Bull. Braz. Math. Soc., 2001, 41:3, 339–353MathSciNetCrossRef Caminha A., Souza P., Camargo F.: Complete foliations of space forms by hypersurfaces, Bull. Braz. Math. Soc., 2001, 41:3, 339–353MathSciNetCrossRef
15.
go back to reference Chavel I.: Eigenvalues in Riemannian Geometry, New York, Academic Press, 1984 Chavel I.: Eigenvalues in Riemannian Geometry, New York, Academic Press, 1984
16.
17.
go back to reference Chow W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 1939, 117, 98–105MathSciNetCrossRef Chow W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 1939, 117, 98–105MathSciNetCrossRef
18.
go back to reference Craioveanu M., Puta M., Rassias T.M.: Old and New Aspects in Spectral Geometry, Kluwer Acad Publ, Cambridge, 2001CrossRef Craioveanu M., Puta M., Rassias T.M.: Old and New Aspects in Spectral Geometry, Kluwer Acad Publ, Cambridge, 2001CrossRef
19.
go back to reference Deshmukh S.: Almost Ricci solitons isometric to spheres. Int. J. of Geom. Methods in Modern Physics, 16 (5), 1950073 (2019) Deshmukh S.: Almost Ricci solitons isometric to spheres. Int. J. of Geom. Methods in Modern Physics, 16 (5), 1950073 (2019)
20.
go back to reference Gallot S., Meyer D.: Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl., 1975, 54:3, 259–284MathSciNet Gallot S., Meyer D.: Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl., 1975, 54:3, 259–284MathSciNet
21.
go back to reference Ge H., Zhang S.: Liouville-type theorems on the complete gradient shrinking Ricci solitons, Differential Geometry and its Applications, 2018, 56, 42–53MathSciNetCrossRef Ge H., Zhang S.: Liouville-type theorems on the complete gradient shrinking Ricci solitons, Differential Geometry and its Applications, 2018, 56, 42–53MathSciNetCrossRef
22.
go back to reference Gibbons G.W., Perry M.J.: Quantizing gravitational instantons, Nuclear Phys., 1978, B 146, 90–108 Gibbons G.W., Perry M.J.: Quantizing gravitational instantons, Nuclear Phys., 1978, B 146, 90–108
23.
go back to reference Greene R.E., Wu H.: Harmonic forms on noncompact Riemannian and Kähler manifolds, Michigan Math. J., 1981, 28:1, 63–81MathSciNetCrossRef Greene R.E., Wu H.: Harmonic forms on noncompact Riemannian and Kähler manifolds, Michigan Math. J., 1981, 28:1, 63–81MathSciNetCrossRef
24.
go back to reference Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., 36:2 (1999), 135–249MathSciNetCrossRef Grigor’yan A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc., 36:2 (1999), 135–249MathSciNetCrossRef
25.
go back to reference Grigor’yan A.: Heat kernel and analysis on manifolds, AMS/IP, Boston, 2009 Grigor’yan A.: Heat kernel and analysis on manifolds, AMS/IP, Boston, 2009
26.
go back to reference Heil K., Moroianu A., Semmelmann U.: Killing and conformal Killing tensor, J. of Geometry and Physics, 2016, 106, 383–400MathSciNetCrossRef Heil K., Moroianu A., Semmelmann U.: Killing and conformal Killing tensor, J. of Geometry and Physics, 2016, 106, 383–400MathSciNetCrossRef
27.
go back to reference Hitchin, N.: A note on vanishing theorems, In: Geometry and Analysis on Manifolds, Progr. Math., 2015, 308, 373–382 Hitchin, N.: A note on vanishing theorems, In: Geometry and Analysis on Manifolds, Progr. Math., 2015, 308, 373–382
28.
29.
go back to reference Kröncke K.: Stability of Einstein metrics under Ricci flow, Communications in Analysis and Geometry, 2020, 28:2, 351–394MathSciNetCrossRef Kröncke K.: Stability of Einstein metrics under Ricci flow, Communications in Analysis and Geometry, 2020, 28:2, 351–394MathSciNetCrossRef
30.
31.
go back to reference Li P., Schoen R.: \(L^{q}\) and mean value properties of subharmonic functions on Riemannian manifolds, Acta Mathematica, 1984, 153, 279–301MathSciNetCrossRef Li P., Schoen R.: \(L^{q}\) and mean value properties of subharmonic functions on Riemannian manifolds, Acta Mathematica, 1984, 153, 279–301MathSciNetCrossRef
32.
33.
go back to reference Lichnerowicz A.: Propagateurs et commutateurs en relativité générale. Publ. Math., Inst. Hautes Étud. Sci. 10 (1961), 293–344 Lichnerowicz A.: Propagateurs et commutateurs en relativité générale. Publ. Math., Inst. Hautes Étud. Sci. 10 (1961), 293–344
34.
go back to reference Lichnerowicz A.: Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A-B, 1963, 257, 7-9 Lichnerowicz A.: Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A-B, 1963, 257, 7-9
36.
go back to reference Mikeš J., Stepanov S.E.: The spectral theory of the Yano rough Laplacian with some of its applications, Ann. Glob. Anal. Geom., 2015, 48, 37–4MathSciNetCrossRef Mikeš J., Stepanov S.E.: The spectral theory of the Yano rough Laplacian with some of its applications, Ann. Glob. Anal. Geom., 2015, 48, 37–4MathSciNetCrossRef
37.
go back to reference Mikeš J., Rovenski V., Stepanov S.E.: A Contribution of Liouville-Type Theorems to the Geometry in the Large of Hadamard Manifolds, Mathematics, 2022, 10(16), article number 2880 Mikeš J., Rovenski V., Stepanov S.E.: A Contribution of Liouville-Type Theorems to the Geometry in the Large of Hadamard Manifolds, Mathematics, 2022, 10(16), article number 2880
38.
go back to reference Mikeš J., Stepanov S.E.: What is the Bochner technique and where is it applied, Lobachevskii J. of Mathematics, 2022, 43(3), 709–719MathSciNetCrossRef Mikeš J., Stepanov S.E.: What is the Bochner technique and where is it applied, Lobachevskii J. of Mathematics, 2022, 43(3), 709–719MathSciNetCrossRef
39.
go back to reference Mikeš J., Rovenski V., Stepanov S.E., Tsyganok I.I.: Application of the generalized Bochner technique to the study of conformally flat Riemannian manifolds, Mathematics, 2021, 9(9), article number 927 Mikeš J., Rovenski V., Stepanov S.E., Tsyganok I.I.: Application of the generalized Bochner technique to the study of conformally flat Riemannian manifolds, Mathematics, 2021, 9(9), article number 927
40.
go back to reference Mikeš J., Rovenski V., Stepanov S.E.: An example of Lichnerowicz-type Laplacian, Ann. Global Anal. Geom. 58:1 (2020), 19–34MathSciNetCrossRef Mikeš J., Rovenski V., Stepanov S.E.: An example of Lichnerowicz-type Laplacian, Ann. Global Anal. Geom. 58:1 (2020), 19–34MathSciNetCrossRef
41.
go back to reference Mikeš J., Stepanov S.E., Tsyganok I.I.: On metrics projectively and holomorphically projectively equivalent to metrics of parabolic Riemannian and Kähler manifolds, Filomat, 2023, 37:3, 949–956MathSciNetCrossRef Mikeš J., Stepanov S.E., Tsyganok I.I.: On metrics projectively and holomorphically projectively equivalent to metrics of parabolic Riemannian and Kähler manifolds, Filomat, 2023, 37:3, 949–956MathSciNetCrossRef
42.
go back to reference Morgan J., Tian G.: Ricci flow and Poincare conjecture, Clay Math. Monographs, 3. AMS, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2007) Morgan J., Tian G.: Ricci flow and Poincare conjecture, Clay Math. Monographs, 3. AMS, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2007)
43.
44.
45.
go back to reference Pigola S., Rigoli M., Setti A.G.: Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique, Birkhäuser, 2008 Pigola S., Rigoli M., Setti A.G.: Vanishing and finiteness results in geometric analysis: A generalization of the Bochner technique, Birkhäuser, 2008
46.
go back to reference Pigola S., Rigoli M., Setti A.G.: Maximum principles on Riemannian manifolds and applications, AMS, Providence, 2005CrossRef Pigola S., Rigoli M., Setti A.G.: Maximum principles on Riemannian manifolds and applications, AMS, Providence, 2005CrossRef
47.
go back to reference Pigola S., Rigoli M., Rimoldi M., Setti A.G.: Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4), 757–799 (2011)MathSciNet Pigola S., Rigoli M., Rimoldi M., Setti A.G.: Ricci almost solitons, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (4), 757–799 (2011)MathSciNet
48.
go back to reference Pigola S., Rimoldi M., Setti A.G.: Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, 2011, 268, 777–790MathSciNetCrossRef Pigola S., Rimoldi M., Setti A.G.: Remarks on non-compact gradient Ricci solitons, Mathematische Zeitschrift, 2011, 268, 777–790MathSciNetCrossRef
49.
go back to reference Pilch K., Schellekens A.N.: Formulas for the eigenvalues of the Laplacian on tensor harmonics on symmetric coset spaces, J. Math. Phys., 1984, 25, 34MathSciNetCrossRef Pilch K., Schellekens A.N.: Formulas for the eigenvalues of the Laplacian on tensor harmonics on symmetric coset spaces, J. Math. Phys., 1984, 25, 34MathSciNetCrossRef
50.
go back to reference Popescu P. Rovenski V. and Stepanov S.E.: The Weitzenböck type curvature operator for singular distributions, Mathematics, MDPI, 2020, 18 pp. Popescu P. Rovenski V. and Stepanov S.E.: The Weitzenböck type curvature operator for singular distributions, Mathematics, MDPI, 2020, 18 pp.
51.
go back to reference Popescu P. Rovenski V. and Stepanov S.E.: On singular distributions with statistical structure, Mathematics, MDPI, 2020, 8, 1825 Popescu P. Rovenski V. and Stepanov S.E.: On singular distributions with statistical structure, Mathematics, MDPI, 2020, 8, 1825
52.
go back to reference Romero A.: The introduction of Bochner’s technique on Lorentzian manifolds, Nonlinear Analysis, 47, 2001, 3047–3059MathSciNet Romero A.: The introduction of Bochner’s technique on Lorentzian manifolds, Nonlinear Analysis, 47, 2001, 3047–3059MathSciNet
53.
go back to reference Rovenski V., Stepanov S.E., Tsyganok I.I.: On evolution equations under the Hamilton’s Ricci flow, Results in Mathematics, 2020, 75(4), article number 166 Rovenski V., Stepanov S.E., Tsyganok I.I.: On evolution equations under the Hamilton’s Ricci flow, Results in Mathematics, 2020, 75(4), article number 166
54.
go back to reference Rovenski V., Stepanov S.E., Tsyganok I.I.: On the geometry in the large of Lichnerowicz type Laplacians and its applications, Balkan J. Geom. Appl. 25:2 (2020), 76–93MathSciNet Rovenski V., Stepanov S.E., Tsyganok I.I.: On the geometry in the large of Lichnerowicz type Laplacians and its applications, Balkan J. Geom. Appl. 25:2 (2020), 76–93MathSciNet
55.
go back to reference Rovenski V., Stepanov S.E., Tsyganok I.I.: The Bourguignon Laplacian and harmonic symmetric bilinear forms, Mathematics, 2020, 8, 83CrossRef Rovenski V., Stepanov S.E., Tsyganok I.I.: The Bourguignon Laplacian and harmonic symmetric bilinear forms, Mathematics, 2020, 8, 83CrossRef
56.
go back to reference Rovenski V., Stepanov S.E., Tsyganok I.I.: On the Betti and Tachibana numbers of compact Einstein manifolds, Mathematics, 2019, 7, 1210CrossRef Rovenski V., Stepanov S.E., Tsyganok I.I.: On the Betti and Tachibana numbers of compact Einstein manifolds, Mathematics, 2019, 7, 1210CrossRef
57.
go back to reference Rovenski V. and Walczak P.: Extrinsic geometry of foliations, Birkhäuser, Progress in Mathematics, Vol. 339, 2021 Rovenski V. and Walczak P.: Extrinsic geometry of foliations, Birkhäuser, Progress in Mathematics, Vol. 339, 2021
58.
59.
go back to reference Schoen R., Yau S.T.: Lectures on harmonic maps, Boston, Internat. Press, 1994 Schoen R., Yau S.T.: Lectures on harmonic maps, Boston, Internat. Press, 1994
60.
go back to reference Stepanov S.E.: Vanishing theorems in affine, Riemannian, and Lorentz geometries, J. of Mathematical Sciences, 2007, 141: 1, 929–964MathSciNetCrossRef Stepanov S.E.: Vanishing theorems in affine, Riemannian, and Lorentz geometries, J. of Mathematical Sciences, 2007, 141: 1, 929–964MathSciNetCrossRef
61.
go back to reference Stepanov S.E.: A contribution to the geometry in the large of conformal diffeomorphisms, J. of Geometry and Physics, 2019, 143, 1–10MathSciNetCrossRef Stepanov S.E.: A contribution to the geometry in the large of conformal diffeomorphisms, J. of Geometry and Physics, 2019, 143, 1–10MathSciNetCrossRef
62.
go back to reference Stepanov S.E., Denezhkina I.E., Ovchinnikov A.V.: On geometric analysis of the dynamics of volumetric expansion and its applications to general relativity, J. Math. Sci. (New York), 2020, 245:5, 659–668CrossRef Stepanov S.E., Denezhkina I.E., Ovchinnikov A.V.: On geometric analysis of the dynamics of volumetric expansion and its applications to general relativity, J. Math. Sci. (New York), 2020, 245:5, 659–668CrossRef
63.
go back to reference Stepanov S.E., Mikeš J.: The generalized Landau–Raychaudhuri equation and its applications, International J. of Geometric Methods in Modern Physics, 2015, 12:08, article number 1560026 Stepanov S.E., Mikeš J.: The generalized Landau–Raychaudhuri equation and its applications, International J. of Geometric Methods in Modern Physics, 2015, 12:08, article number 1560026
64.
go back to reference Stepanov S.E., Tsyganok I.I.: On the Lichnerowicz Laplacian, J. of Mathematical Sciences, Vol. 263, No. 3, 2022, 416–422CrossRef Stepanov S.E., Tsyganok I.I.: On the Lichnerowicz Laplacian, J. of Mathematical Sciences, Vol. 263, No. 3, 2022, 416–422CrossRef
65.
go back to reference Stepanov S.E., Aleksandrova I.A., Tsyganok I.I.: From harmonic mappings to Ricci flows due to the Bochner technique, J. of Mathematical Sciences (New York), 2022, 263: 3, 423–435CrossRef Stepanov S.E., Aleksandrova I.A., Tsyganok I.I.: From harmonic mappings to Ricci flows due to the Bochner technique, J. of Mathematical Sciences (New York), 2022, 263: 3, 423–435CrossRef
66.
go back to reference Stepanov S.E., Mikeš J.: Application of the Hopf maximum principle to the theory of geodesic mappings, Kragujevac J. of Mathematics, 2021, 45:5, 781–786MathSciNetCrossRef Stepanov S.E., Mikeš J.: Application of the Hopf maximum principle to the theory of geodesic mappings, Kragujevac J. of Mathematics, 2021, 45:5, 781–786MathSciNetCrossRef
67.
go back to reference Suh Y.J.: Generalized maximum principles and their applications to submanifolds and S. S. Chern’s conjectures, Proc. of the 11-th Int. Workshop on Diff. Geom. 2007, 11, 135–152 Suh Y.J.: Generalized maximum principles and their applications to submanifolds and S. S. Chern’s conjectures, Proc. of the 11-th Int. Workshop on Diff. Geom. 2007, 11, 135–152
68.
go back to reference Wu H.-H.: The Bochner technique in differential geometry, Harwood Academic Publ., 1988 Wu H.-H.: The Bochner technique in differential geometry, Harwood Academic Publ., 1988
69.
go back to reference Yano K.: Integral formulas in Riemannian geometry, N.Y., Marcel Dekker, 1970 Yano K.: Integral formulas in Riemannian geometry, N.Y., Marcel Dekker, 1970
70.
go back to reference Yano K., Bochner S.: Curvature and Betti numbers, Princeton University Press, 1953 Yano K., Bochner S.: Curvature and Betti numbers, Princeton University Press, 1953
71.
go back to reference Yau S.T.: Non-existence of continuous convex functions on certain Riemannian manifolds, Math. Ann., 207 (1974), 269–270MathSciNetCrossRef Yau S.T.: Non-existence of continuous convex functions on certain Riemannian manifolds, Math. Ann., 207 (1974), 269–270MathSciNetCrossRef
72.
go back to reference Yau S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 1976, 25:1, 659–670MathSciNetCrossRef Yau S.-T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 1976, 25:1, 659–670MathSciNetCrossRef
73.
go back to reference Yau S.-T.: Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Vol. 25 (1976), 659–670, Indiana Univ. Math. J., 1982, 31:4, 607 Yau S.-T.: Erratum: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Vol. 25 (1976), 659–670, Indiana Univ. Math. J., 1982, 31:4, 607
Metadata
Title
Lichnerowicz-Type Laplacians in the Bochner Technique
Authors
Vladimir Rovenski
Sergey Stepanov
Irina Tsyganok
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_8

Premium Partner