Skip to main content
Top

2024 | OriginalPaper | Chapter

Lie Algebraic Method for Generating Certain Harmonic Oscillator-Like Functions

Author : Mohannad Shahwan

Published in: Mathematical Analysis and Numerical Methods

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter presents a Lie algebraic method for generating harmonic oscillator-like functions, building upon the theory of generalized Hermite polynomials (GHP). It applies Weiner’s group theoretic method to derive new generating relations, demonstrating the effectiveness of this approach in both theoretical and practical contexts. The study highlights the commutation relations and Lie differential operators essential for understanding these functions, and it concludes with applications that showcase the method’s versatility and potential for further research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G., Torre, A.: Theory of generalized hermite polynomials. Compu. Math. Appl. 28(4), 71–83 (1994)MathSciNetCrossRef Dattoli, G., Chiccoli, C., Lorenzutta, S., Maino, G., Torre, A.: Theory of generalized hermite polynomials. Compu. Math. Appl. 28(4), 71–83 (1994)MathSciNetCrossRef
2.
go back to reference Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., Cesarano, C.: Generalized Hermite polynomials and Supergaussian forms. J. Math. Anal. Appl. 203, 597–609 (1996)MathSciNetCrossRef Dattoli, G., Lorenzutta, S., Maino, G., Torre, A., Cesarano, C.: Generalized Hermite polynomials and Supergaussian forms. J. Math. Anal. Appl. 203, 597–609 (1996)MathSciNetCrossRef
3.
go back to reference Dattoli, G., Torre, A., Mazzacurati, G.: Generalized Hermite and Luguerre polynomials and associated biorthogonal functions. Radiat Phys. Chem. 50, 133–139 (1997)CrossRef Dattoli, G., Torre, A., Mazzacurati, G.: Generalized Hermite and Luguerre polynomials and associated biorthogonal functions. Radiat Phys. Chem. 50, 133–139 (1997)CrossRef
4.
go back to reference Dattoli, G., Torre, A., Carpanese, M.: Operational rules and arbitrary order Hermite generating functions. J. Math. Anal. Appl. 227, 98–111 (1998)MathSciNetCrossRef Dattoli, G., Torre, A., Carpanese, M.: Operational rules and arbitrary order Hermite generating functions. J. Math. Anal. Appl. 227, 98–111 (1998)MathSciNetCrossRef
5.
go back to reference Dattoli, G.: Generalized polynomials, operational identities, and their applications. Comp. Math. Appl. 118, 111–123 (2000)MathSciNet Dattoli, G.: Generalized polynomials, operational identities, and their applications. Comp. Math. Appl. 118, 111–123 (2000)MathSciNet
6.
go back to reference Dattoli, G., Germano, B., Ricci, P.E.: Hermite polynomials with more than two variables and associated bi-orthogonal functions. Integral Transf. Spec. Funct. 20, 17–22 (2009)MathSciNetCrossRef Dattoli, G., Germano, B., Ricci, P.E.: Hermite polynomials with more than two variables and associated bi-orthogonal functions. Integral Transf. Spec. Funct. 20, 17–22 (2009)MathSciNetCrossRef
7.
go back to reference Gomez-Ullate, David, Grandate, Yves, Milson, Robert: Corrigendum on the proof of completeness Holomorphic for the exceptional Hermite polynomials. J. Approx. Theor. 253, 1–10 (2020)CrossRef Gomez-Ullate, David, Grandate, Yves, Milson, Robert: Corrigendum on the proof of completeness Holomorphic for the exceptional Hermite polynomials. J. Approx. Theor. 253, 1–10 (2020)CrossRef
8.
9.
10.
go back to reference Ghanmi, A.: Operational formulae for the complex Hermite polynomials \(H_{p, q}\left(z, z^{\ast }\right)\). Integral Transf. Spec. Funct. 24, 884–895 (2013)CrossRef Ghanmi, A.: Operational formulae for the complex Hermite polynomials \(H_{p, q}\left(z, z^{\ast }\right)\). Integral Transf. Spec. Funct. 24, 884–895 (2013)CrossRef
11.
go back to reference Gorska, K., Horzela, A., Szafraniec, F.H.: Holomorphic Hermite polynomials in two variables. J. Math. Anal. Appl. 470, 750–769 (2019)MathSciNetCrossRef Gorska, K., Horzela, A., Szafraniec, F.H.: Holomorphic Hermite polynomials in two variables. J. Math. Anal. Appl. 470, 750–769 (2019)MathSciNetCrossRef
12.
go back to reference Gould, H.W., Hopper, A.T.: Operational formulas connected with two generalizations of Hermite Polynomials. Duke Math. J. 29, 51–62 (1962)MathSciNetCrossRef Gould, H.W., Hopper, A.T.: Operational formulas connected with two generalizations of Hermite Polynomials. Duke Math. J. 29, 51–62 (1962)MathSciNetCrossRef
13.
go back to reference Ismail, M.E.H., Zeng, J.: Two variable extensions of the Laguerre and disc polynomials. J. Math. Anal. Appl. 424, 289–303 (2015)MathSciNetCrossRef Ismail, M.E.H., Zeng, J.: Two variable extensions of the Laguerre and disc polynomials. J. Math. Anal. Appl. 424, 289–303 (2015)MathSciNetCrossRef
14.
15.
go back to reference Rainville, E.D.: Special functions. Macmillan, New York (1968). Reprinted by Chesla Publications Co., Bronx, New York (1971) Rainville, E.D.: Special functions. Macmillan, New York (1968). Reprinted by Chesla Publications Co., Bronx, New York (1971)
16.
go back to reference Shahwan, M.J.S., Sharif, A.M., Maged, G.: Bin-Saad: generating functions for generalized Hermite polynomials associated with parabolic cylinder functions. Integral Transf. Spec. Funct. 31(5), 383–394 (2020)CrossRef Shahwan, M.J.S., Sharif, A.M., Maged, G.: Bin-Saad: generating functions for generalized Hermite polynomials associated with parabolic cylinder functions. Integral Transf. Spec. Funct. 31(5), 383–394 (2020)CrossRef
17.
Metadata
Title
Lie Algebraic Method for Generating Certain Harmonic Oscillator-Like Functions
Author
Mohannad Shahwan
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4876-1_5

Premium Partner