3.1 General activities and background system
Several materials and by-products involved in the chitosan supply chain affect the markets for animal feed. According to Schmidt and Dalgaard (
2012, Sect. 7.2), the marginal source of animal feed can be broken down to one market for feed protein and one market for feed energy. The most likely sources of feed protein and feed energy to be affected have been identified as soybean meal from Brazil and barley from Ukraine (Schmidt
2015). Inventory data for soybean meal and barley systems were obtained from Schmidt (
2015). One of the key aspects of soybean meal is that its production leads to soy oil as co-product, which is assumed to substitute palm oil in the market (Schmidt
2015).
In order to assess iLUC with the model by Schmidt et al. (
2015), this requires quantifying the potential production capacity, measured as productivity weighted hectare years (ha*year-eq) of each land using activity. This unit measures potential net primary production (NPP
0) in the considered region relative to the global average. The ha*year-eqs were defined for each of the crops involved in the product system, namely barley in Ukraine, soybean in Brazil and palm fruit in Malaysia/Indonesia. Based on Haberl et al. (
2007), the global average NPP
0 for arable land is 6.11 t C/ha/year and the average ha*year-eqs for the mentioned crop-country location combinations were estimated as 0.82, 1.47 and 2.0 ha*year-eqs, respectively.
In the foreground system, electricity production mixes were defined for four countries/regions involved in the chitosan supply chains, namely Canada, China, India and the EU, plus three countries involved in animal feed production systems, namely Brazil, Malaysia and Indonesia. Electricity production mixes were defined looking at long-term marginal supply, based on current production compared to forecasts to 2020 for each country/region (Muñoz et al.
2015).
All activities in the background system were modelled with the consequential version of the ecoinvent database v.3.1 (ecoinvent Centre
2016).
3.2 Indian chitosan supply chain
As described in Sect.
2.2, diverting shrimp shells from animal feed to chitosan production affects the animal feed market by inducing production of an equivalent amount of feed energy and feed protein per kilogram of shell. Based on Mahtani’s characterisation of shrimp shells and the average nutritional composition given by Feedipedia (INRA, CIRAD, AFZ and FAO 2015), it was estimated that 1 kg shells in wet weight (75% moisture) contains 2.1 MJ feed energy equivalents and 0.16 kg protein equivalents.
Chitin production requires 33 kg shrimp shells in wet weight per kg chitin. Shells are transported from the shrimp-processing factory using a tractor with an open trailer, consuming 1.4 L diesel per tonne shrimp shells. The production process consumes, on a per kg chitin basis, 0.02 L diesel for bulldozer operation, 8 kg HCl 32%, 1.3 kg NaOH, 1.3 kWh electricity and 167 L freshwater. Land occupation by Mahtani’s facilities is 0.045 m2 yr per kg chitin. The release of CO2 from calcium carbonate in shells during the treatment with acid is estimated at 0.7 kg CO2 per kg chitin, based on their carbon content and stoichiometry. Solid waste from chitin production includes 1.5 kg calcium salts/kg chitin, which were modelled as sent to an inert landfill, and 4 kg of protein sludge, expressed in dry mass, which are used as fertilizer. The use of protein sludge displaces the use of mineral N fertilizers, assuming that 1 kg nitrogen in organic sludge replaces 0.4 kg nitrogen in mineral fertilizers (Boldrin et al. 2009). The LCI for application of sludge as fertilizer includes emissions of dinitrogen monoxide, ammonia and nitrogen oxides based on IPCC (2006) as well as CO2 from the mineralisation of organic carbon in proteins.
Chitosan production requires 1.4 kg chitin per kg chitosan. Mahtani reports the following auxiliary inputs, per kg chitosan: 5.18 kg NaOH, 1.06 kWh, 31 MJ wood fuel and 250 L water. Land occupation was estimated at 0.043 m2 yr. Finally, the carbon storage in chitosan, based on its empirical formula (C6H11NO4)n, is quantified as 1.64 kg CO2/kg. The same figure is used in the LCI of chitosan produced in Europe.
Wastewater generated in the chitin and chitosan production steps is treated on-site by means of neutralisation, primary settling, biological treatment and sand filtration. Emissions to seawater from the treated effluent are included in the inventory (see
supplementary material).
3.3 European chitosan supply chain
The diversion of crab waste to chitosan production displaces its current use (or disposal method), namely composting and the subsequent use of compost as fertilizer. We did not have access to actual data from composting plants in Canada, and we modelled this process based on publicly available data. Based on GAMS (
2010), an estimated distance of 25 km by truck was assumed to transport crab waste to the composting plant. Composting energy and equipment use, including plant buildings, etc., were obtained from the ecoinvent database (Nemecek and Kägi 2017), which provides data for windrow composting in Switzerland. Emissions associated to the composting process, namely CO
2, dinitrogen monoxide, methane, ammonia, nitrogen oxides and hydrogen sulphide, were estimated using mass balances, based on snow crab waste composition as reported by GAMS (
2010) and several literature sources (Muñoz et al.
2008; IPCC 2006; Soliva
2001; FAO and IFA
2001; Smith et al.
2001; Mathur et al.
1988). Displacement of mineral N fertilizer by compost was modelled as described for protein sludge in Sect.
3.2. Displacement of P fertilizer assumed that 1 kg P in compost replaces 0.95 kg P in mineral fertilizer (Boldrin et al. 2009). Crab compost was also assumed to displace limestone use, based on a 1:1 equivalence.
Drying of crab shells was also based on generic LCI data, in particular on the ecoinvent data set for drying of feed grain (Nemecek and Kägi
2007) and the amount of water to be evaporated. The latter corresponds to 0.33 kg water per kg crab shell in wet weight, assuming that the initial moisture is 40% (GAMS
2010) and final moisture is 10% according to the chitosan manufacturer.
Dry crab shells are transported to the port in Canada, where we assume an average distance of 100 km. For maritime transport, we used a distance of 13,722 nm (25,413 km), between the coast of New Foundland and Qingdao (Ports.com
2016). From Qingdao port to the chitin manufacturer, the average distance is 100 km. All transport services were modelled with ecoinvent data sets for road and sea freight transport.
Primary data on chitin production in China were collected by the European chitosan producer, directly from its chitin supplier. This process requires 10 kg dry crab shell per kg chitin and consumes 1.2 kWh electricity, 6 kg coal for heating purposes, 9 kg HCl (6% vol.), 8 kg NaOH (4% vol.) and 300 L freshwater, also per kg chitin. Land occupation was estimated at 0.07 m
2 yr per kg chitin. The release of CO
2 from treatment of shells with acid was estimated at 0.9 kg CO
2 per kg chitin, based on their carbon content and stoichiometry. Solid waste from chitin production includes wastewater and protein sludge. The amount of wastewater produced as well as its treatment was not reported by the chitin producer. The wastewater volume was estimated assuming that it equals the freshwater input (process water plus water in chemical solutions), and in terms of treatment, it was assimilated to urban wastewater, being treated according to the ecoinvent data set for average wastewater (Doka
2007). The amount of protein sludge recovered from wastewater was estimated based on the crab waste composition and assuming recovery of 75% of the protein fraction. This percentage assumes that the Chinese chitin producer has the same protein recovery efficiency as Mahtani in India. Based on these assumptions, we estimated that 2.84 kg protein in dry mass is recovered per kg chitin. This material is used as animal feed according to the chitin producer, thus displacing the marginal supply of feed protein in the market (soybean meal; see Sect.
3.1).
Chitin is shipped to Europe. We assumed an average distance of 100 km from the chitin producer to the port. For maritime transport, we used a distance of 12,351 nm (22,874 km) between Qingdao and Rotterdam (Ports.com
2016). From Rotterdam to the chitosan manufacturer, we added 500 km of road transport.
Primary data on chitosan production for medical applications were provided by the European producer based on their own operations. The data collected included the chitin-to-chitosan yield, freshwater input, use of chemicals (NaOH), electricity use, land occupation and production of wastewater and waste NaOH for disposal. Unfortunately, the primary data are confidential and the figures cannot be disclosed in this publication. For this reason, in the
supplementary material, we provide an inventory table for this process, where figures are not shown but where the background data sets used can be seen. As in chitin production, wastewater was assimilated to average urban wastewater and modelled with the same data set for wastewater treatment. Finally, data on disposal of waste NaOH solutions was not available. This waste is managed by a dedicated company in Europe, and it is judged by the chitosan producer that waste is subject to neutralisation. We included in the inventory an estimate of the transport, acid consumption for neutralisation and subsequent treatment of the solution in a municipal wastewater treatment plant.