Skip to main content
Top

2009 | OriginalPaper | Chapter

7. Light Coupling and Passive Optical Devices

Author : Mohammad Azadeh

Published in: Fiber Optics Engineering

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In electrical circuits, passive components refer to resistors, capacitors, and inductors; elements that overall consume power. On the other hand, active components deliver power to a system. In fiber optic systems, passive components typically refer to those that are not involved in opto-electric conversion, i.e., they neither generate nor detect light. Instead they are involved in guiding or manipulating the light without adding energy to it.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
See Chapter 5 for a discussion on numerical aperture and guided modes in a fiber.
 
2
Of course, in realty, any finite size column of light traveling in free space will eventually diffract.
 
Literature
[1]
go back to reference A. Christopher et al., “Ideal microlenses for laser to fiber coupling,” Journal of Lightwave Technology, Vol. 11, pp. 252–257, 1993CrossRef A. Christopher et al., “Ideal microlenses for laser to fiber coupling,” Journal of Lightwave Technology, Vol. 11, pp. 252–257, 1993CrossRef
[2]
go back to reference Z. Jing et al., “Design and characterization of taper coupler for effective laser and single-mode fiber coupling with large tolerance,” IEEE Photonics Technology Letters, Vol. 20, pp. 1375–1377, 2008CrossRef Z. Jing et al., “Design and characterization of taper coupler for effective laser and single-mode fiber coupling with large tolerance,” IEEE Photonics Technology Letters, Vol. 20, pp. 1375–1377, 2008CrossRef
[3]
go back to reference K. Shiraishi, H. Yoda, T. Endo, and I. Tomita, “A lensed GIO fiber with a long working distance for the coupling between laser diodes with elliptical fields and single-mode fibers,” IEEE Photonics Technology Letters, Vol. 16, pp. 1104–1106, 2004CrossRef K. Shiraishi, H. Yoda, T. Endo, and I. Tomita, “A lensed GIO fiber with a long working distance for the coupling between laser diodes with elliptical fields and single-mode fibers,” IEEE Photonics Technology Letters, Vol. 16, pp. 1104–1106, 2004CrossRef
[4]
go back to reference R. A. Modavis and T. W. Webb, “Anamorphic microlens for laser diode to single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 7, pp. 798–800, 1995CrossRef R. A. Modavis and T. W. Webb, “Anamorphic microlens for laser diode to single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 7, pp. 798–800, 1995CrossRef
[5]
go back to reference J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE Journal of Quantum Electronics, Vol. 16, pp. 1059–1067, 1980CrossRef J. Sakai and T. Kimura, “Design of a miniature lens for semiconductor laser to single-mode fiber coupling,” IEEE Journal of Quantum Electronics, Vol. 16, pp. 1059–1067, 1980CrossRef
[6]
go back to reference H. M. Presby and A. Benner, “Bevelled-microlensed taper connectors for laser and fibre coupling with minimal back-reflections,” Electronics Letters, Vol. 24, pp. 1162–1163, 1988CrossRef H. M. Presby and A. Benner, “Bevelled-microlensed taper connectors for laser and fibre coupling with minimal back-reflections,” Electronics Letters, Vol. 24, pp. 1162–1163, 1988CrossRef
[7]
go back to reference S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Misalignment considerations in a laser diode to monomode elliptic core fiber coupling via a hyperbolic microlens on the fiber tip: efficiency computation by the ABCD matrix,” Optical Engineering, Vol. 46, Article No. 095008, 2007 S. Mukhopadhyay, S. Gangopadhyay, and S. Sarkar, “Misalignment considerations in a laser diode to monomode elliptic core fiber coupling via a hyperbolic microlens on the fiber tip: efficiency computation by the ABCD matrix,” Optical Engineering, Vol. 46, Article No. 095008, 2007
[8]
go back to reference K. Shiraishi et al., “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” Journal of Lightwave Technology, Vol. 13, pp. 1736–1744, 1995CrossRef K. Shiraishi et al., “A fiber lens with a long working distance for integrated coupling between laser diodes and single-mode fibers,” Journal of Lightwave Technology, Vol. 13, pp. 1736–1744, 1995CrossRef
[9]
go back to reference K. Kato et al., “Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens,” IEEE Photonics Technology Letters, Vol. 3, pp. 469–470, 1991CrossRef K. Kato et al., “Optical coupling characteristics of laser diodes to thermally diffused expanded core fiber coupling using an aspheric lens,” IEEE Photonics Technology Letters, Vol. 3, pp. 469–470, 1991CrossRef
[10]
go back to reference Y. Fu et al., “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 12, pp. 1213–1215, 2000CrossRef Y. Fu et al., “Integrated micro-cylindrical lens with laser diode for single-mode fiber coupling,” IEEE Photonics Technology Letters, Vol. 12, pp. 1213–1215, 2000CrossRef
[11]
go back to reference T. Sugie and M. Saruwatari, “Distributed feedback laser diode (DFB-LD) to single-mode fiber coupling module with optical isolator for high bit rate modulation,” Journal of Lightwave Technology, Vol. 4, pp. 236–245, 1986CrossRef T. Sugie and M. Saruwatari, “Distributed feedback laser diode (DFB-LD) to single-mode fiber coupling module with optical isolator for high bit rate modulation,” Journal of Lightwave Technology, Vol. 4, pp. 236–245, 1986CrossRef
[12]
go back to reference K. Kurokawa and E. E. Becker, “Laser fiber coupling with a hyperbolic lens,” IEEE Transactions on Microwave Theory and Techniques, Vol. 23, pp. 309–311, 1975CrossRef K. Kurokawa and E. E. Becker, “Laser fiber coupling with a hyperbolic lens,” IEEE Transactions on Microwave Theory and Techniques, Vol. 23, pp. 309–311, 1975CrossRef
[13]
go back to reference M. Saruwatari and T. Sugie, “Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition,” IEEE Journal of Quantum Electronics, Vol. 17, pp. 1021–1027, 1981CrossRef M. Saruwatari and T. Sugie, “Efficient laser diode to single-mode fiber coupling using a combination of two lenses in confocal condition,” IEEE Journal of Quantum Electronics, Vol. 17, pp. 1021–1027, 1981CrossRef
[14]
go back to reference K. Kato and I. Nishi, “Low-loss laser diode module using a molded aspheric glass lens,” IEEE Photonics Technology Letters, Vol. 2, pp 473–374, 1990 K. Kato and I. Nishi, “Low-loss laser diode module using a molded aspheric glass lens,” IEEE Photonics Technology Letters, Vol. 2, pp 473–374, 1990
[15]
go back to reference J. K. Myoung et al., “Lens-free optical fiber connector having a long working distance assisted by matched long-period fiber gratings,” Journal of Lightwave Technology, Vol. 23, pp. 588–596, 2005CrossRef J. K. Myoung et al., “Lens-free optical fiber connector having a long working distance assisted by matched long-period fiber gratings,” Journal of Lightwave Technology, Vol. 23, pp. 588–596, 2005CrossRef
[16]
go back to reference Y. Abe et al., “16-fiber fiber physical contact connector with MU connector coupling mechanism, compact shutter and fiber clamping structure,” IEEE Transactions on Electronics, Vol. E87-C, pp. 1307–1312, 2004 Y. Abe et al., “16-fiber fiber physical contact connector with MU connector coupling mechanism, compact shutter and fiber clamping structure,” IEEE Transactions on Electronics, Vol. E87-C, pp. 1307–1312, 2004
[17]
go back to reference K. Shibata, M. Takaya, and S Nagasawa, “Design and performance of high-precision MT-type connector for 1.55-mu m zero-dispersion-shifted fiber-ribbon cables,” IEEE Photonics Technology Letters, Vol. 13, pp. 136–138, 2001CrossRef K. Shibata, M. Takaya, and S Nagasawa, “Design and performance of high-precision MT-type connector for 1.55-mu m zero-dispersion-shifted fiber-ribbon cables,” IEEE Photonics Technology Letters, Vol. 13, pp. 136–138, 2001CrossRef
[18]
go back to reference K. M. Wagner, D. L. Dean, and M. Giebel, “SC-DC/SC-QC fiber optic connector,” Optical Engineering, Vol. 37, pp. 3129–3133, 1998CrossRef K. M. Wagner, D. L. Dean, and M. Giebel, “SC-DC/SC-QC fiber optic connector,” Optical Engineering, Vol. 37, pp. 3129–3133, 1998CrossRef
[19]
go back to reference K. Kanayama et al., “Characteristics of an SC-type optical fiber connector with a newly developed pre-assembled ferrule,” IEEE Photonics Technology Letters, Vol. 7, pp. 520–522, 1995CrossRef K. Kanayama et al., “Characteristics of an SC-type optical fiber connector with a newly developed pre-assembled ferrule,” IEEE Photonics Technology Letters, Vol. 7, pp. 520–522, 1995CrossRef
[20]
go back to reference TIA-604-2-B (FOCIS-2) Fiber Optic Connector Intermateability Standard, Type ST, Telecommunication Industry Association (TIA), 2004 TIA-604-2-B (FOCIS-2) Fiber Optic Connector Intermateability Standard, Type ST, Telecommunication Industry Association (TIA), 2004
[21]
go back to reference TIA-604-4-B (FOCIS-4) Fiber Optic Connector Intermateability Standard, Type FC and FC-APC, Telecommunication Industry Association (TIA), 2004 TIA-604-4-B (FOCIS-4) Fiber Optic Connector Intermateability Standard, Type FC and FC-APC, Telecommunication Industry Association (TIA), 2004
[22]
go back to reference TIA-604-3-B (FOCIS-3) Fiber Optic Connector Intermateability Standard, Type SC and SC-APC, Telecommunication Industry Association (TIA), 2004 TIA-604-3-B (FOCIS-3) Fiber Optic Connector Intermateability Standard, Type SC and SC-APC, Telecommunication Industry Association (TIA), 2004
[23]
go back to reference TIA/EIA-604-10A (FOCIS-10) Fiber Optic Connector Intermateability Standard-Type LC, Telecommunication Industry Association (TIA), 2002 TIA/EIA-604-10A (FOCIS-10) Fiber Optic Connector Intermateability Standard-Type LC, Telecommunication Industry Association (TIA), 2002
[24]
go back to reference TIA-604-1 (FOCIS 1) Fiber Optic Connector Intermateability Standard, Telecommunication Industry Association (TIA), 1996 TIA-604-1 (FOCIS 1) Fiber Optic Connector Intermateability Standard, Telecommunication Industry Association (TIA), 1996
[25]
go back to reference TIA-604-5-B (FOCIS 5) Fiber Optic Connector Intermateability Standard-Type MPO, Telecommunication Industry Association (TIA), 2002 TIA-604-5-B (FOCIS 5) Fiber Optic Connector Intermateability Standard-Type MPO, Telecommunication Industry Association (TIA), 2002
[26]
go back to reference TIA/EIA-604-12 (FOCIS 12) Fiber Optic Connector Intermateability Standard Type MT-RJ, Telecommunication Industry Association (TIA), 2000 TIA/EIA-604-12 (FOCIS 12) Fiber Optic Connector Intermateability Standard Type MT-RJ, Telecommunication Industry Association (TIA), 2000
[27]
go back to reference TIA-604-17 (FOCIS 17) Fiber Optic Connector Intermateability Standard, Type MU, Telecommunication Industry Association (TIA), 2004 TIA-604-17 (FOCIS 17) Fiber Optic Connector Intermateability Standard, Type MU, Telecommunication Industry Association (TIA), 2004
[28]
go back to reference A. D. Yablon, Optical Fiber Fusion Splicing , Springer, Heidelberg, 2005 A. D. Yablon, Optical Fiber Fusion Splicing , Springer, Heidelberg, 2005
[30]
go back to reference V. Alwayn, Optical Network Design and Implementation , Cisco Press, Indianapolis, IN, 2004 V. Alwayn, Optical Network Design and Implementation , Cisco Press, Indianapolis, IN, 2004
[31]
go back to reference K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” Journal of Lightwave Technology, Vol. 22, pp. 1358–1366, 2004CrossRef K. S. Chiang, F. Y. M. Chan, and M. N. Ng, “Analysis of two parallel long-period fiber gratings,” Journal of Lightwave Technology, Vol. 22, pp. 1358–1366, 2004CrossRef
[32]
go back to reference S. J. Hewlett, J. D. Love, and V. V. Steblina, “Analysis and design of highly broad-band, planar evanescent couplers,” Optical and Quantum Electronics, Vol. 28, pp. 71–81, 1996CrossRef S. J. Hewlett, J. D. Love, and V. V. Steblina, “Analysis and design of highly broad-band, planar evanescent couplers,” Optical and Quantum Electronics, Vol. 28, pp. 71–81, 1996CrossRef
[33]
go back to reference A. Ankiewicz, A. Snyder, and X. H. Zheng, “Coupling between parallel optical fiber cores-Critical examination,” Journal of Lightwave Technology, Vol. 4, pp. 1317–1323, 1986CrossRef A. Ankiewicz, A. Snyder, and X. H. Zheng, “Coupling between parallel optical fiber cores-Critical examination,” Journal of Lightwave Technology, Vol. 4, pp. 1317–1323, 1986CrossRef
[34]
go back to reference M. Tabiani and M. Kavehrad, “An efficient N×N passive optical star coupler,” IEEE Photonics Technology Letters, Vol. 2, pp. 826–829, 1990CrossRef M. Tabiani and M. Kavehrad, “An efficient N×N passive optical star coupler,” IEEE Photonics Technology Letters, Vol. 2, pp. 826–829, 1990CrossRef
[35]
go back to reference A. A. M. Saleh and H. Kogelnik, “Reflective single-mode fiber-optic passive star couplers,” Journal of Lightwave Technology, Vol. 6, pp. 392–398, 1988CrossRef A. A. M. Saleh and H. Kogelnik, “Reflective single-mode fiber-optic passive star couplers,” Journal of Lightwave Technology, Vol. 6, pp. 392–398, 1988CrossRef
[36]
go back to reference B. Borovic et al., “Light-intensity-feedback-waveform generator based on MEMS variable optical attenuator,” IEEE Transactions on Industrial Electronics, Vol. 55, pp. 417–426, 2008CrossRef B. Borovic et al., “Light-intensity-feedback-waveform generator based on MEMS variable optical attenuator,” IEEE Transactions on Industrial Electronics, Vol. 55, pp. 417–426, 2008CrossRef
[37]
go back to reference A. Unamuno and D. Uttamchandani, “MEMS variable optical attenuator with Vernier latching mechanism,” IEEE Photonics Technology Letters, Vol. 18, pp. 88–90, 2008CrossRef A. Unamuno and D. Uttamchandani, “MEMS variable optical attenuator with Vernier latching mechanism,” IEEE Photonics Technology Letters, Vol. 18, pp. 88–90, 2008CrossRef
[38]
go back to reference H. Cai et al., “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photonics Technology Letters, Vol. 17, pp. 402–204, 2005 H. Cai et al., “Linear MEMS variable optical attenuator using reflective elliptical mirror,” IEEE Photonics Technology Letters, Vol. 17, pp. 402–204, 2005
[39]
go back to reference K. Shiraishi, F. Tajima, and S Kawakami, “Compact faraday rotator for an optical isolator using magnets arranged with alternating polarities,” Optics Letters, Vol. 11, pp. 82–84, 1986CrossRef K. Shiraishi, F. Tajima, and S Kawakami, “Compact faraday rotator for an optical isolator using magnets arranged with alternating polarities,” Optics Letters, Vol. 11, pp. 82–84, 1986CrossRef
[40]
go back to reference J. F. Lafortune and R. Vallee, “Short length fiber Faraday rotator,” Optics Communications, Vol. 86, pp. 497–503, 1991CrossRef J. F. Lafortune and R. Vallee, “Short length fiber Faraday rotator,” Optics Communications, Vol. 86, pp. 497–503, 1991CrossRef
[41]
go back to reference D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent magnet Faraday isolator,” Optics Letters, Vol. 11, pp. 623–625, 1986CrossRef D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent magnet Faraday isolator,” Optics Letters, Vol. 11, pp. 623–625, 1986CrossRef
[42]
go back to reference H. A. Macleod, Thin Film Optical Filters , 3rd Ed., Institute of Physics Publishing, Bristol, 2003 H. A. Macleod, Thin Film Optical Filters , 3rd Ed., Institute of Physics Publishing, Bristol, 2003
[43]
go back to reference V. Kochergin, Omnidirectional Optical Filters , Kluwer Academic Publishers, Dordrecht, 2003 V. Kochergin, Omnidirectional Optical Filters , Kluwer Academic Publishers, Dordrecht, 2003
[44]
go back to reference K. Okamoto, Fundamentals of Optical Waveguides , 2nd Ed, Academic Press, New York, 2006 K. Okamoto, Fundamentals of Optical Waveguides , 2nd Ed, Academic Press, New York, 2006
Metadata
Title
Light Coupling and Passive Optical Devices
Author
Mohammad Azadeh
Copyright Year
2009
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0304-4_7