Skip to main content
Top

2019 | OriginalPaper | Chapter

21. Light Detection And Ranging (LiDAR)

Authors : Joseph Awange, John Kiema

Published in: Environmental Geoinformatics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Light Detection And Ranging (LiDAR) is an active laser measuring technology that combines laser scanning and Position and Orientation System (POS) in imaging for generation of accurate and dense 3D point clouds, Digital Elevation Models (DEMs) and Digital Surface Models (DSMs). Other value addition products such as contours, slope maps, tree and building height models and cut-and-fill models can also be produced from the primary LiDAR point cloud data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ackermann F (1999) Airborne laser scanning - present status and future expectations. ISPRS J Photogramm Remote Sens 54:64–67CrossRef Ackermann F (1999) Airborne laser scanning - present status and future expectations. ISPRS J Photogramm Remote Sens 54:64–67CrossRef
2.
go back to reference Rizaldy A, Firdaus W (2012) Direct georeferencing: a new standard in photogrammetry for high accuracy mapping. ISPRS-Int Arch Photogramm, Remote Sens Spat Inf Sci 39:59 Rizaldy A, Firdaus W (2012) Direct georeferencing: a new standard in photogrammetry for high accuracy mapping. ISPRS-Int Arch Photogramm, Remote Sens Spat Inf Sci 39:59
3.
go back to reference Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York, 416p Weng Q (2010) Remote sensing and GIS integration: theories, methods, and applications. McGraw-Hill, New York, 416p
4.
go back to reference Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30(1):64–76CrossRef Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30(1):64–76CrossRef
6.
go back to reference Alharthy A, Bethel J (2002) Heuristic filtering and 3D feature extraction from LiDAR data. In: International archives of photogrammetry and remote sensing (IAPRS), Graz, Austria, Vol. XXXIV, Part 3A, pp 29–34 Alharthy A, Bethel J (2002) Heuristic filtering and 3D feature extraction from LiDAR data. In: International archives of photogrammetry and remote sensing (IAPRS), Graz, Austria, Vol. XXXIV, Part 3A, pp 29–34
7.
go back to reference Kraus K (2007) Photogrammetry: geometry from images and laser scans (trans: Harley I and Kyle S) (2nd edn, Vol 1). Deutsche Nationalbibliothek Kraus K (2007) Photogrammetry: geometry from images and laser scans (trans: Harley I and Kyle S) (2nd edn, Vol 1). Deutsche Nationalbibliothek
8.
go back to reference Fieber KD, Davenport IJ, Ferryman JM, Gurney RJ, Walker JP, Hacker JM (2013) Analysis of full-waveform LiDAR data for classification of an orange orchard scene. ISPRS J Photogramm Remote Sens 82:63–82CrossRef Fieber KD, Davenport IJ, Ferryman JM, Gurney RJ, Walker JP, Hacker JM (2013) Analysis of full-waveform LiDAR data for classification of an orange orchard scene. ISPRS J Photogramm Remote Sens 82:63–82CrossRef
9.
go back to reference Mikhail EM, Bethel JS, McGlone JC (2015) Introduction to modern photogrammetry. Wiley, New York Mikhail EM, Bethel JS, McGlone JC (2015) Introduction to modern photogrammetry. Wiley, New York
13.
go back to reference Jaffe JS, Moore KD, McLean J, Strand MP (2001) Underwater optical imaging: status and prospects. Oceanography 14(3):66CrossRef Jaffe JS, Moore KD, McLean J, Strand MP (2001) Underwater optical imaging: status and prospects. Oceanography 14(3):66CrossRef
17.
go back to reference Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies: LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 52(1):19–30 (2002). https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies: LiDAR, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 52(1):19–30 (2002). https://​doi.​org/​10.​1641/​0006-3568(2002)052[0019:​LRSFES]2.​0.​CO;2
19.
go back to reference Tansey K, Selmes N, Anstee A, Tate NT, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30(2009):5195–5209CrossRef Tansey K, Selmes N, Anstee A, Tate NT, Denniss A (2009) Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. Int J Remote Sens 30(2009):5195–5209CrossRef
20.
go back to reference Garca M, Riao D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816–830CrossRef Garca M, Riao D, Chuvieco E, Danson FM (2010) Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sens Environ 114(4):816–830CrossRef
22.
go back to reference Cicimol A (2010) Classification of full-waveform airborne laser scanning data and extraction of attributes of vegetation for topographic mapping. PhD Thesis University of Leicester Cicimol A (2010) Classification of full-waveform airborne laser scanning data and extraction of attributes of vegetation for topographic mapping. PhD Thesis University of Leicester
24.
go back to reference Brunn A, Weidner U (1997) Extracting buildings from digital surface models. Int Arch Photogramm Remote Sens 32:27–34 Brunn A, Weidner U (1997) Extracting buildings from digital surface models. Int Arch Photogramm Remote Sens 32:27–34
25.
go back to reference Clode S, Rottensteinerb F, Kootsookosc P, Zelniker E (2007) Detection and vectorization of roads from LiDAR data. Photogramm Eng Remote Sens 73:517–535CrossRef Clode S, Rottensteinerb F, Kootsookosc P, Zelniker E (2007) Detection and vectorization of roads from LiDAR data. Photogramm Eng Remote Sens 73:517–535CrossRef
26.
go back to reference Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Anal Appl 8:357–374CrossRef Forlani G, Nardinocchi C, Scaioni M, Zingaretti P (2006) Complete classification of raw LiDAR data and 3D reconstruction of buildings. Pattern Anal Appl 8:357–374CrossRef
27.
go back to reference Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogramm Remote Sens 54:130–137CrossRef Haala N, Brenner C (1999) Extraction of buildings and trees in urban environments. ISPRS J Photogramm Remote Sens 54:130–137CrossRef
28.
go back to reference Miliaresis G, Kokkas N (2007) Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs. Comput Geosci 33:1076–1087CrossRef Miliaresis G, Kokkas N (2007) Segmentation and object-based classification for the extraction of the building class from LiDAR DEMs. Comput Geosci 33:1076–1087CrossRef
29.
go back to reference Kokkas N, (2005) City modeling and building reconstruction with Socet Set vol 5.2 BAE Systems. Customer presentation at the 2005 GXP Regional User Conference. Cambridge, England, pp 19–21 Kokkas N, (2005) City modeling and building reconstruction with Socet Set vol 5.2 BAE Systems. Customer presentation at the 2005 GXP Regional User Conference. Cambridge, England, pp 19–21
30.
go back to reference Lee DH, Lee KM, Lee SU (2008) Fusion of LiDAR and imagery for reliable building extraction. Photogramm Eng Remote Sens 74:215–225CrossRef Lee DH, Lee KM, Lee SU (2008) Fusion of LiDAR and imagery for reliable building extraction. Photogramm Eng Remote Sens 74:215–225CrossRef
31.
go back to reference Secord J, Zakhor A (2007) Tree detection in urban regions using aerial LiDAR and image data. IEEE Geosci Remote Sens Lett 4:196–200CrossRef Secord J, Zakhor A (2007) Tree detection in urban regions using aerial LiDAR and image data. IEEE Geosci Remote Sens Lett 4:196–200CrossRef
32.
go back to reference Sohn G, Dowman I (2005) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm Remote Sens 62(1):43–63CrossRef Sohn G, Dowman I (2005) Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS J Photogramm Remote Sens 62(1):43–63CrossRef
33.
go back to reference Voss M, Sugumaran R (2008) Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8:3020–3036CrossRef Voss M, Sugumaran R (2008) Seasonal effect on tree species classification in an urban environment using hyperspectral data, LiDAR, and an object-oriented approach. Sensors 8:3020–3036CrossRef
37.
go back to reference Uddin W (2002) Evaluation of airborne LiDAR digital terrain mapping for highway corridor planning and design. Proc. Pecora. www.isprs.org Uddin W (2002) Evaluation of airborne LiDAR digital terrain mapping for highway corridor planning and design. Proc. Pecora. www.​isprs.​org
41.
go back to reference Grebby S, Naden J, Cunningham D, Tansey K (2011) Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens Environ 115(1):214–226CrossRef Grebby S, Naden J, Cunningham D, Tansey K (2011) Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens Environ 115(1):214–226CrossRef
44.
go back to reference Renslow M, Greenfield P, Guay T (2000) Evaluation of multi-return LiDAR for forestry applications. Project Report for the Inventory and Monitoring Steering Committee, RSAC-2060/4810-LSP-0001-RPT1 Renslow M, Greenfield P, Guay T (2000) Evaluation of multi-return LiDAR for forestry applications. Project Report for the Inventory and Monitoring Steering Committee, RSAC-2060/4810-LSP-0001-RPT1
46.
go back to reference Wichmann V, Bremer M, Lindenberger J, Rutzinger M, Georges C, Petrini-Monteferri, F (2015) Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3/W5 Wichmann V, Bremer M, Lindenberger J, Rutzinger M, Georges C, Petrini-Monteferri, F (2015) Evaluating the potential of multispectral airborne LiDAR for topographic mapping and land cover classification. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol II-3/W5
47.
go back to reference Spinhirne JD (1993) Micro pulse LiDAR. IEEE Trans Geosci Remote Sens 31(1):48CrossRef Spinhirne JD (1993) Micro pulse LiDAR. IEEE Trans Geosci Remote Sens 31(1):48CrossRef
48.
go back to reference Konecny G (2003) Geoinformation: remote sensing, photogrammetry, geographic informa Konecny G (2003) Geoinformation: remote sensing, photogrammetry, geographic informa
49.
go back to reference Renslow M (2005) The status of LiDAR today and future directions . Proceedings of ISPRS WG 1/2 ISPRS WG 1/2, Banff Workshop Renslow M (2005) The status of LiDAR today and future directions . Proceedings of ISPRS WG 1/2 ISPRS WG 1/2, Banff Workshop
50.
go back to reference Aplin P, Atkinson PM, Curran PJ (1997) Fine spatial resolution satellite sensors for the next decade. Int J Remote Sens 18:3873–3881CrossRef Aplin P, Atkinson PM, Curran PJ (1997) Fine spatial resolution satellite sensors for the next decade. Int J Remote Sens 18:3873–3881CrossRef
51.
go back to reference Bähr H-P, Vögtle T (eds) (1998) Erderkundungssatelliten und ihre Produkte. Digitale Bildverarbeitung, vol 3. Wichmann Verlag, Heidelberg, pp 29–43 Bähr H-P, Vögtle T (eds) (1998) Erderkundungssatelliten und ihre Produkte. Digitale Bildverarbeitung, vol 3. Wichmann Verlag, Heidelberg, pp 29–43
52.
go back to reference Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54:83–94CrossRef Baltsavias E (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54:83–94CrossRef
53.
go back to reference Campbell JB (2007) Introduction to remote sensing, 4th edn. Guilford Press, New York Campbell JB (2007) Introduction to remote sensing, 4th edn. Guilford Press, New York
54.
go back to reference Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Taylor & Francis Group, London Congalton R, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices. Taylor & Francis Group, London
55.
go back to reference Devillers R, Jeansoulin R (eds) (2006) Fundamentals of spatial data quality. ISTE Ltd, Washington, D.C Devillers R, Jeansoulin R (eds) (2006) Fundamentals of spatial data quality. ISTE Ltd, Washington, D.C
56.
go back to reference Forshaw MRB, Haskell A, Miller PF, Stanley DJ, Townshend JRG (1983) Spatial resolution of remotely sensed imagery: a review paper. Int J Remote Sens 4(3):497–520CrossRef Forshaw MRB, Haskell A, Miller PF, Stanley DJ, Townshend JRG (1983) Spatial resolution of remotely sensed imagery: a review paper. Int J Remote Sens 4(3):497–520CrossRef
57.
go back to reference Fritz LW (1996) The Era of commercial earth observation satellites. Photogramm Eng Remote Sens 1:39–45 Fritz LW (1996) The Era of commercial earth observation satellites. Photogramm Eng Remote Sens 1:39–45
58.
go back to reference Groot R, McLaughlin J (eds) (2000) Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press, Oxford Groot R, McLaughlin J (eds) (2000) Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press, Oxford
59.
go back to reference Guelman M, Ortenberg F (2009) Small satellite’s role in future hyperspectral earth observation missions. Acta Astronautica 64:1252–1263CrossRef Guelman M, Ortenberg F (2009) Small satellite’s role in future hyperspectral earth observation missions. Acta Astronautica 64:1252–1263CrossRef
60.
go back to reference Ho C, Robinson A, Millerm D, Davis M (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37CrossRef Ho C, Robinson A, Millerm D, Davis M (2005) Overview of sensors and needs for environmental monitoring. Sensors 5:4–37CrossRef
61.
go back to reference Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle River, NJ Jensen JR (2005) Introductory digital image processing: a remote sensing perspective, 3rd edn. Prentice-Hall, Upper Saddle River, NJ
62.
go back to reference Joseph G (2000) How well do we understand earth observation electro-optical sensor parameters? ISPRS J Photogramm Remote Sens 55:9–12CrossRef Joseph G (2000) How well do we understand earth observation electro-optical sensor parameters? ISPRS J Photogramm Remote Sens 55:9–12CrossRef
63.
go back to reference Kiema JBK (2001) Multi-source data fusion and image compression in urban remote sensing. Doctor of Engineering. Dissertation. University of Karlsruhe (ISBN3-8265-9312-X) Shaker Verlag, 130p Kiema JBK (2001) Multi-source data fusion and image compression in urban remote sensing. Doctor of Engineering. Dissertation. University of Karlsruhe (ISBN3-8265-9312-X) Shaker Verlag, 130p
64.
go back to reference Kramer HJ, Cracknell A (2008) An overview of small satellites. Int J Remote Sens 29:4285–4337CrossRef Kramer HJ, Cracknell A (2008) An overview of small satellites. Int J Remote Sens 29:4285–4337CrossRef
65.
go back to reference Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of Philosophy. Dissertation. University of Mines and Technology, Ghana, 165p Kumi-Boateng B (2012) A spatio-temporal based estimation of vegetation changes in the Tarkwa mining area of Ghana. Doctor of Philosophy. Dissertation. University of Mines and Technology, Ghana, 165p
66.
go back to reference Kussul N, Shelestov A, Skakun S (2009) Grid and sensor web technologies for environmental monitoring. Earth Sci Inform 2(1–2):37–51CrossRef Kussul N, Shelestov A, Skakun S (2009) Grid and sensor web technologies for environmental monitoring. Earth Sci Inform 2(1–2):37–51CrossRef
68.
go back to reference Ma R (2005) DEM generation and building detection from LiDAR data. Photogramm Eng & Remote Sens 71(7):847–854CrossRef Ma R (2005) DEM generation and building detection from LiDAR data. Photogramm Eng & Remote Sens 71(7):847–854CrossRef
69.
go back to reference McCoy R (2005) Field methods in remote sensing. The Guilford Press, New York, 158p McCoy R (2005) Field methods in remote sensing. The Guilford Press, New York, 158p
70.
go back to reference Murai S (2004) Remote sensing and GIS courses - distance education. Japan International Cooperation Agency (JICA)-Net Murai S (2004) Remote sensing and GIS courses - distance education. Japan International Cooperation Agency (JICA)-Net
71.
go back to reference Phinn SR (1998) A framework for selecting appropriate remote sensed data dimensions for environmental monitoring and management. Int J Remote Sens 19:3457–3463CrossRef Phinn SR (1998) A framework for selecting appropriate remote sensed data dimensions for environmental monitoring and management. Int J Remote Sens 19:3457–3463CrossRef
72.
go back to reference Popescue SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRef Popescue SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRef
73.
go back to reference Porter J, Arzberger P, Braun H, Brynat P, Gage S, Hansen T, Lin C, Lin F, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. BioScience 55:561–572CrossRef Porter J, Arzberger P, Braun H, Brynat P, Gage S, Hansen T, Lin C, Lin F, Kratz T, Michener W, Shapiro S, Williams T (2005) Wireless sensor networks for ecology. BioScience 55:561–572CrossRef
74.
go back to reference Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. Lewis Publishers, New York Quattrochi DA, Goodchild MF (1997) Scale in remote sensing and GIS. Lewis Publishers, New York
75.
go back to reference Ramapriyan HK (2002) Satellite imagery in earth science applications. In: Castelli V, Bergman LD (eds) Image databases: search and retrieval of digital imagery. Wiley, New York Ramapriyan HK (2002) Satellite imagery in earth science applications. In: Castelli V, Bergman LD (eds) Image databases: search and retrieval of digital imagery. Wiley, New York
76.
go back to reference Schenk T, Csatho B (2002) Fusion of LiDAR data and aerial imagery for a more complete surface description. Archives of photogrammetry Schenk T, Csatho B (2002) Fusion of LiDAR data and aerial imagery for a more complete surface description. Archives of photogrammetry
77.
go back to reference Schiewe J (1998) Experiences from the MOMS-02-project for future developments. Int Arch Photogramm Remote Sens 32:533–539 Schiewe J (1998) Experiences from the MOMS-02-project for future developments. Int Arch Photogramm Remote Sens 32:533–539
78.
go back to reference Ussyshkin RV, Smith RB (2007) A new approach for assessing LiDAR data accuracy for corridor mapping applications. In: Proceedings of the 5th international symposium on mobile mapping technology, Padua, Italy Ussyshkin RV, Smith RB (2007) A new approach for assessing LiDAR data accuracy for corridor mapping applications. In: Proceedings of the 5th international symposium on mobile mapping technology, Padua, Italy
79.
go back to reference Xue Y, Li Y, Guang J, Zhang X, Guo J (2008) Small satellite remote sensing applications - history, current and future. Int J Remote Sens 29:4339–4372CrossRef Xue Y, Li Y, Guang J, Zhang X, Guo J (2008) Small satellite remote sensing applications - history, current and future. Int J Remote Sens 29:4339–4372CrossRef
80.
go back to reference Zhang Y, Xie P, Li H (2007) An online colour 2D and 3D image system for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 1–15 Zhang Y, Xie P, Li H (2007) An online colour 2D and 3D image system for disaster management. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer, Berlin, pp 1–15
Metadata
Title
Light Detection And Ranging (LiDAR)
Authors
Joseph Awange
John Kiema
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-03017-9_21