Skip to main content
Top

2021 | OriginalPaper | Chapter

14. Lignin Valorization in Biorefineries Through Integrated Fractionation, Advanced Characterization, and Fermentation Intensification Strategies

Authors : Zhi-Min Zhao, Yan Chen, Xianzhi Meng, Siying Zhang, Jingya Wang, Zhi-Hua Liu, Arthur J. Ragauskas

Published in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignin valorization is essential for achieving profitable and sustainable biorefinery. However, the complex structure of lignin and the presence of lignin–carbohydrate complex (LCC) result in a series of obstacles that contribute to biomass recalcitrance. In addition, the heterogeneity of lignin and the unclear relationship between lignin structure and its activity significantly restrict the lignin valorization process. Therefore, this chapter provides the progress toward lignin valorization in three aspects. First, various fractionation strategies developed in recent years have been summarized to evaluate how uniform lignin fractions could be produced. Second, recent advances in lignin characterization techniques as well as their important roles for understanding lignin structure and providing guidance for lignin processing are systematically investigated and reviewed. Besides these, promising lignin bioconversion approaches through fermentation have been provided in detail. Fermentation intensification strategies are systematically examined from the aspects of microbial strains, substrates, and processes design. With the increase in fundamental understanding of lignin structure–activity relationships, a more directional and controllable lignin valorization path could be developed to contribute to the profitability and sustainability of biorefineries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, Z. H., Xie, S., Lin, F., Jin, M., & Yuan, J. S. (2018b). Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 11(1), 21.CrossRef Liu, Z. H., Xie, S., Lin, F., Jin, M., & Yuan, J. S. (2018b). Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion. Biotechnology for Biofuels, 11(1), 21.CrossRef
2.
go back to reference Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., & Keller, M. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.CrossRef Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., & Keller, M. (2014). Lignin valorization: Improving lignin processing in the biorefinery. Science, 344(6185), 1246843.CrossRef
3.
go back to reference Wang, M., & Liu, C. (2016). Theoretic studies on decomposition mechanism of o-methoxy phenethyl phenyl ether: Primary and secondary reactions. Journal of Analytical and Applied Pyrolysis, 117, 325–333.CrossRef Wang, M., & Liu, C. (2016). Theoretic studies on decomposition mechanism of o-methoxy phenethyl phenyl ether: Primary and secondary reactions. Journal of Analytical and Applied Pyrolysis, 117, 325–333.CrossRef
4.
go back to reference Giummarella, N., Pu, Y., Ragauskas, A. J., & Lawoko, M. (2019). A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 21(7), 1573–1595.CrossRef Giummarella, N., Pu, Y., Ragauskas, A. J., & Lawoko, M. (2019). A critical review on the analysis of lignin carbohydrate bonds. Green Chemistry, 21(7), 1573–1595.CrossRef
5.
go back to reference Björkman, A. (1956). Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidning, 59(13), 477–485. Björkman, A. (1956). Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Papperstidning, 59(13), 477–485.
6.
go back to reference Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617, 1–16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure, 1617, 1–16.
7.
go back to reference Tejado, A., Pena, C., Labidi, J., Echeverria, J., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655–1663.CrossRef Tejado, A., Pena, C., Labidi, J., Echeverria, J., & Mondragon, I. (2007). Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresource Technology, 98(8), 1655–1663.CrossRef
8.
go back to reference Ragauskas, A. J. (2016). Challenging/interesting lignin times. Biofuels, Bioproducts and Biorefining, 10(5), 489–491.CrossRef Ragauskas, A. J. (2016). Challenging/interesting lignin times. Biofuels, Bioproducts and Biorefining, 10(5), 489–491.CrossRef
9.
go back to reference Wang, G. (2015). Fractionation of lignin from steam-exploded corn stalk and lignin-based materials preparation. Beijing: University of Chinese Academy of Sciences. Wang, G. (2015). Fractionation of lignin from steam-exploded corn stalk and lignin-based materials preparation. Beijing: University of Chinese Academy of Sciences.
10.
go back to reference Xue, B. (2015). Preparation of lignin-based polyurethane and its performance characterization. Beijing: Beijing Forestry University. Xue, B. (2015). Preparation of lignin-based polyurethane and its performance characterization. Beijing: Beijing Forestry University.
11.
go back to reference Mahan, K. M., Le, R. K., Yuan, J., & Ragauskas, A. J. (2017). A review on the bioconversion of lignin to microbial lipid with oleaginous Rhodococcus opacus. Journal of Biotechnology & Biomaterials, 7, 02. Mahan, K. M., Le, R. K., Yuan, J., & Ragauskas, A. J. (2017). A review on the bioconversion of lignin to microbial lipid with oleaginous Rhodococcus opacus. Journal of Biotechnology & Biomaterials, 7, 02.
12.
go back to reference Sasaki, C., Wanaka, M., Takagi, H., Tamura, S., Asada, C., & Nakamura, Y. (2013). Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Industrial Crops and Products, 43, 757–761.CrossRef Sasaki, C., Wanaka, M., Takagi, H., Tamura, S., Asada, C., & Nakamura, Y. (2013). Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Industrial Crops and Products, 43, 757–761.CrossRef
13.
go back to reference Li, X., & Zheng, Y. (2019). Biotransformation of lignin: Mechanisms, applications and future work. Biotechnology Progress, 36, e2922. Li, X., & Zheng, Y. (2019). Biotransformation of lignin: Mechanisms, applications and future work. Biotechnology Progress, 36, e2922.
14.
go back to reference Xie, S., Ragauskas, A. J., & Yuan, J. S. (2016). Lignin conversion: Opportunities and challenges for the integrated biorefinery. Industrial Biotechnology, 12(3), 161–167.CrossRef Xie, S., Ragauskas, A. J., & Yuan, J. S. (2016). Lignin conversion: Opportunities and challenges for the integrated biorefinery. Industrial Biotechnology, 12(3), 161–167.CrossRef
15.
go back to reference Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.CrossRef Beckham, G. T., Johnson, C. W., Karp, E. M., Salvachúa, D., & Vardon, D. R. (2016). Opportunities and challenges in biological lignin valorization. Current Opinion in Biotechnology, 42, 40–53.CrossRef
16.
go back to reference Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Alriols, M. G., & Labidi, J. (2019). Lignin separation and fractionation by ultrafiltration. In Separation of functional molecules in food by membrane technology (pp. 229–265). London: Elsevier.CrossRef Fernández-Rodríguez, J., Erdocia, X., Hernández-Ramos, F., Alriols, M. G., & Labidi, J. (2019). Lignin separation and fractionation by ultrafiltration. In Separation of functional molecules in food by membrane technology (pp. 229–265). London: Elsevier.CrossRef
17.
go back to reference Toledano, A., García, A., Mondragon, I., & Labidi, J. (2010). Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology, 71(1), 38–43.CrossRef Toledano, A., García, A., Mondragon, I., & Labidi, J. (2010). Lignin separation and fractionation by ultrafiltration. Separation and Purification Technology, 71(1), 38–43.CrossRef
18.
go back to reference Wang, G., & Chen, H. Z. (2013). Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separation and Purification Technology, 105, 98–105.CrossRef Wang, G., & Chen, H. Z. (2013). Fractionation of alkali-extracted lignin from steam-exploded stalk by gradient acid precipitation. Separation and Purification Technology, 105, 98–105.CrossRef
19.
go back to reference Lourençon, T. V., Hansel, F. A., da Silva, T. A., Ramos, L. P., de Muniz, G. I., & Magalhães, W. L. (2015). Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Separation and Purification Technology, 154, 82–88.CrossRef Lourençon, T. V., Hansel, F. A., da Silva, T. A., Ramos, L. P., de Muniz, G. I., & Magalhães, W. L. (2015). Hardwood and softwood kraft lignins fractionation by simple sequential acid precipitation. Separation and Purification Technology, 154, 82–88.CrossRef
20.
go back to reference Holtz, A., Weidener, D., Leitner, W., Klose, H., Grande, P. M., & Jupke, A. (2020). Process development for separation of lignin from OrganoCat lignocellulose fractionation using antisolvent precipitation. Separation and Purification Technology, 236, 116295.CrossRef Holtz, A., Weidener, D., Leitner, W., Klose, H., Grande, P. M., & Jupke, A. (2020). Process development for separation of lignin from OrganoCat lignocellulose fractionation using antisolvent precipitation. Separation and Purification Technology, 236, 116295.CrossRef
21.
go back to reference Wang, Y. Y., Li, M., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2018b). Fast fractionation of technical lignins by organic cosolvents. ACS Sustainable Chemistry & Engineering, 6(5), 6064–6072.CrossRef Wang, Y. Y., Li, M., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2018b). Fast fractionation of technical lignins by organic cosolvents. ACS Sustainable Chemistry & Engineering, 6(5), 6064–6072.CrossRef
22.
go back to reference Santos, P. S., Erdocia, X., Gatto, D. A., & Labidi, J. (2014). Characterisation of Kraft lignin separated by gradient acid precipitation. Industrial Crops and Products, 55, 149–154.CrossRef Santos, P. S., Erdocia, X., Gatto, D. A., & Labidi, J. (2014). Characterisation of Kraft lignin separated by gradient acid precipitation. Industrial Crops and Products, 55, 149–154.CrossRef
23.
go back to reference Liu, Z. H., Hao, N., Shinde, S., Pu, Y., Kang, X., Ragauskas, A. J., & Yuan, J. S. (2019a). Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 21(2), 245–260.CrossRef Liu, Z. H., Hao, N., Shinde, S., Pu, Y., Kang, X., Ragauskas, A. J., & Yuan, J. S. (2019a). Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 21(2), 245–260.CrossRef
24.
go back to reference Mörck, R., Reimann, A., & Kringstad, K. P. (1988). Fractionation of kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung, 42(2), 111–116.CrossRef Mörck, R., Reimann, A., & Kringstad, K. P. (1988). Fractionation of kraft lignin by successive extraction with organic solvents. III. Fractionation of kraft lignin from birch. Holzforschung, 42(2), 111–116.CrossRef
25.
go back to reference Mörck, R., Yoshida, H., Kringstad, K. P., & Hatakeyama, H. (1986). Fractionation of kraft lignin by successive extraction with organic solvents. I. Functional groups (13) C-NMR-spectra and molecular weight distributions. Holzforschung, 40, 51–60.CrossRef Mörck, R., Yoshida, H., Kringstad, K. P., & Hatakeyama, H. (1986). Fractionation of kraft lignin by successive extraction with organic solvents. I. Functional groups (13) C-NMR-spectra and molecular weight distributions. Holzforschung, 40, 51–60.CrossRef
26.
go back to reference Yoshida, H., Mörck, R., Kringstad, K. P., & Hatakeyama, H. (1987). Fractionation of Kraft lignin by successive extraction with organic solvents. II. Thermal properties of kraft lignin fractions. Holzforschung, 41(3), 171–176.CrossRef Yoshida, H., Mörck, R., Kringstad, K. P., & Hatakeyama, H. (1987). Fractionation of Kraft lignin by successive extraction with organic solvents. II. Thermal properties of kraft lignin fractions. Holzforschung, 41(3), 171–176.CrossRef
27.
go back to reference Song, Y., Shi, X., Yang, X., Zhang, X., & Tan, T. (2019). Successive organic solvent fractionation and characterization of heterogeneous lignin extracted by p-Toluenesulfonic acid from hybrid poplar. Energy & Fuels, 34, 557–567.CrossRef Song, Y., Shi, X., Yang, X., Zhang, X., & Tan, T. (2019). Successive organic solvent fractionation and characterization of heterogeneous lignin extracted by p-Toluenesulfonic acid from hybrid poplar. Energy & Fuels, 34, 557–567.CrossRef
28.
go back to reference Wang, G., Pang, T., Xia, Y., Liu, X., Li, S., Parvez, A. M., Kong, F., & Si, C. (2019a). Subdivision of bamboo kraft lignin by one-step ethanol fractionation to enhance its water-solubility and antibacterial performance. International Journal of Biological Macromolecules, 133, 156–164.CrossRef Wang, G., Pang, T., Xia, Y., Liu, X., Li, S., Parvez, A. M., Kong, F., & Si, C. (2019a). Subdivision of bamboo kraft lignin by one-step ethanol fractionation to enhance its water-solubility and antibacterial performance. International Journal of Biological Macromolecules, 133, 156–164.CrossRef
29.
go back to reference Wang, G., Xia, Y., Liang, B., Sui, W., & Si, C. (2018a). Successive ethanol–water fractionation of enzymatic hydrolysis lignin to concentrate its antimicrobial activity. Journal of Chemical Technology and Biotechnology, 93(10), 2977–2987.CrossRef Wang, G., Xia, Y., Liang, B., Sui, W., & Si, C. (2018a). Successive ethanol–water fractionation of enzymatic hydrolysis lignin to concentrate its antimicrobial activity. Journal of Chemical Technology and Biotechnology, 93(10), 2977–2987.CrossRef
30.
go back to reference Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2019b). Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresource Technology, 272, 202–208.CrossRef Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2019b). Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation. Bioresource Technology, 272, 202–208.CrossRef
31.
go back to reference Sultan, Z., Graça, I., Li, Y., Lima, S., Peeva, L. G., Kim, D., Ebrahim, M. A., Rinaldi, R., & Livingston, A. G. (2019). Membrane fractionation of liquors from lignin-first biorefining. ChemSusChem, 12(6), 1203–1212.CrossRef Sultan, Z., Graça, I., Li, Y., Lima, S., Peeva, L. G., Kim, D., Ebrahim, M. A., Rinaldi, R., & Livingston, A. G. (2019). Membrane fractionation of liquors from lignin-first biorefining. ChemSusChem, 12(6), 1203–1212.CrossRef
32.
go back to reference Bär, J., Phongpreecha, T., Singh, S. K., Yilmaz, M. K., Foster, C. E., Crowe, J. D., & Hodge, D. B. (2018). Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Conversion and Biorefinery, 8(4), 813–824.CrossRef Bär, J., Phongpreecha, T., Singh, S. K., Yilmaz, M. K., Foster, C. E., Crowe, J. D., & Hodge, D. B. (2018). Deconstruction of hybrid poplar to monomeric sugars and aromatics using ethanol organosolv fractionation. Biomass Conversion and Biorefinery, 8(4), 813–824.CrossRef
33.
go back to reference Ramakoti, B., Dhanagopal, H., Deepa, K., Rajesh, M., Ramaswamy, S., & Tamilarasan, K. (2019). Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization. Bioresource Technology Reports, 7, 100293.CrossRef Ramakoti, B., Dhanagopal, H., Deepa, K., Rajesh, M., Ramaswamy, S., & Tamilarasan, K. (2019). Solvent fractionation of organosolv lignin to improve lignin homogeneity: Structural characterization. Bioresource Technology Reports, 7, 100293.CrossRef
34.
go back to reference Das, P., Stoffel, R. B., Area, M. C., & Ragauskas, A. J. (2019). Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass & Bioenergy, 120, 350–358.CrossRef Das, P., Stoffel, R. B., Area, M. C., & Ragauskas, A. J. (2019). Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin. Biomass & Bioenergy, 120, 350–358.CrossRef
35.
go back to reference Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., & Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6), 836–856.CrossRef Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A. K., & Ragauskas, A. J. (2014). Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining, 8(6), 836–856.CrossRef
36.
go back to reference Asikkala, J., Tamminen, T., & Argyropoulos, D. S. (2012). Accurate and reproducible determination of lignin molar mass by acetobromination. Journal of Agricultural and Food Chemistry, 60(36), 8968–8973.CrossRef Asikkala, J., Tamminen, T., & Argyropoulos, D. S. (2012). Accurate and reproducible determination of lignin molar mass by acetobromination. Journal of Agricultural and Food Chemistry, 60(36), 8968–8973.CrossRef
37.
go back to reference Fredheim, G. E., Braaten, S. M., & Christensen, B. E. (2002). Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering. Journal of Chromatography. A, 942(1–2), 191–199.CrossRef Fredheim, G. E., Braaten, S. M., & Christensen, B. E. (2002). Molecular weight determination of lignosulfonates by size-exclusion chromatography and multi-angle laser light scattering. Journal of Chromatography. A, 942(1–2), 191–199.CrossRef
38.
go back to reference Wörmeyer, K., Ingram, T., Saake, B., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin. Bioresource Technology, 102(5), 4157–4164.CrossRef Wörmeyer, K., Ingram, T., Saake, B., Brunner, G., & Smirnova, I. (2011). Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin. Bioresource Technology, 102(5), 4157–4164.CrossRef
39.
go back to reference Yoo, C. G., Ragauskas, A. J., & Pu, Y. (2019). Measurement of physicochemical properties of lignin. In Understanding lignocellulose: Synergistic computational and analytic methods (pp. 33–47). Washington, DC: ACS Publications.CrossRef Yoo, C. G., Ragauskas, A. J., & Pu, Y. (2019). Measurement of physicochemical properties of lignin. In Understanding lignocellulose: Synergistic computational and analytic methods (pp. 33–47). Washington, DC: ACS Publications.CrossRef
40.
go back to reference Froass, P. M., Ragauskas, A. J., & Jiang, J. E. (1998). NMR studies part 3: Analysis of lignins from modern kraft pulping technologies. Holzforschung, 52(4), 385–390.CrossRef Froass, P. M., Ragauskas, A. J., & Jiang, J. E. (1998). NMR studies part 3: Analysis of lignins from modern kraft pulping technologies. Holzforschung, 52(4), 385–390.CrossRef
41.
go back to reference Meng, X., Crestini, C., Ben, H., Hao, N., Pu, Y., Ragauskas, A. J., & Argyropoulos, D. S. (2019a). Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 14(9), 2627–2647. Meng, X., Crestini, C., Ben, H., Hao, N., Pu, Y., Ragauskas, A. J., & Argyropoulos, D. S. (2019a). Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nature Protocols, 14(9), 2627–2647.
42.
go back to reference Chen, W., McClelland, D. J., Azarpira, A., Ralph, J., Luo, Z., & Huber, G. W. (2016). Low temperature hydrogenation of pyrolytic lignin over Ru/TiO2: 2D HSQC and 13C NMR study of reactants and products. Green Chemistry, 18(1), 271–281.CrossRef Chen, W., McClelland, D. J., Azarpira, A., Ralph, J., Luo, Z., & Huber, G. W. (2016). Low temperature hydrogenation of pyrolytic lignin over Ru/TiO2: 2D HSQC and 13C NMR study of reactants and products. Green Chemistry, 18(1), 271–281.CrossRef
43.
go back to reference Wang, H., Pu, Y., Ragauskas, A. J., & Yang, B. (2019b). From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 271, 449–461.CrossRef Wang, H., Pu, Y., Ragauskas, A. J., & Yang, B. (2019b). From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 271, 449–461.CrossRef
44.
go back to reference Lange, H., Rulli, F., & Crestini, C. (2016). Gel permeation chromatography in determining molecular weights of lignins: Critical aspects revisited for improved utility in the development of novel materials. ACS Sustainable Chemistry & Engineering, 4(10), 5167–5180.CrossRef Lange, H., Rulli, F., & Crestini, C. (2016). Gel permeation chromatography in determining molecular weights of lignins: Critical aspects revisited for improved utility in the development of novel materials. ACS Sustainable Chemistry & Engineering, 4(10), 5167–5180.CrossRef
45.
go back to reference Cao, S., Hu, W., & Fan, L. (2012). Progress in the structure of lignin and its analyzing methods. Polymer Bulletin, 3, 1. Cao, S., Hu, W., & Fan, L. (2012). Progress in the structure of lignin and its analyzing methods. Polymer Bulletin, 3, 1.
46.
go back to reference Balakshin, M. Y., Capanema, E. A., Santos, R. B., Chang, H.-M., & Jameel, H. (2016). Structural analysis of hardwood native lignins by quantitative 13C NMR spectroscopy. Holzforschung, 70(2), 95–108.CrossRef Balakshin, M. Y., Capanema, E. A., Santos, R. B., Chang, H.-M., & Jameel, H. (2016). Structural analysis of hardwood native lignins by quantitative 13C NMR spectroscopy. Holzforschung, 70(2), 95–108.CrossRef
47.
go back to reference Jensen, A., Cabrera, Y., Hsieh, C.-W., Nielsen, J., Ralph, J., & Felby, C. (2017). 2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities. Holzforschung, 71(6), 461–469.CrossRef Jensen, A., Cabrera, Y., Hsieh, C.-W., Nielsen, J., Ralph, J., & Felby, C. (2017). 2D NMR characterization of wheat straw residual lignin after dilute acid pretreatment with different severities. Holzforschung, 71(6), 461–469.CrossRef
48.
go back to reference Moghaddam, L., Rencoret, J., Maliger, V. R., Rackemann, D. W., Harrison, M. D., Gutiérrez, A., del Río, J. C., & Doherty, W. O. (2017). Structural characteristics of bagasse furfural residue and its lignin component. An NMR, Py-GC/MS, and FTIR study. ACS Sustainable Chemistry & Engineering, 5(6), 4846–4855.CrossRef Moghaddam, L., Rencoret, J., Maliger, V. R., Rackemann, D. W., Harrison, M. D., Gutiérrez, A., del Río, J. C., & Doherty, W. O. (2017). Structural characteristics of bagasse furfural residue and its lignin component. An NMR, Py-GC/MS, and FTIR study. ACS Sustainable Chemistry & Engineering, 5(6), 4846–4855.CrossRef
49.
go back to reference Iiyama, K., & Lam, T. B. T. (1990). Lignin in wheat internodes. Part 1: The reactivities of lignin units during alkaline nitrobenzene oxidation. Journal of Science and Food Agriculture, 51(4), 481–491.CrossRef Iiyama, K., & Lam, T. B. T. (1990). Lignin in wheat internodes. Part 1: The reactivities of lignin units during alkaline nitrobenzene oxidation. Journal of Science and Food Agriculture, 51(4), 481–491.CrossRef
50.
go back to reference Wen, J. L., Chen, T. Y., & Sun, R. C. (2017). Research progress on separation and structural analysis of lignin in lignocellulosic biomass. International Journal of Forest Engineering, 2(5), 76–84. Wen, J. L., Chen, T. Y., & Sun, R. C. (2017). Research progress on separation and structural analysis of lignin in lignocellulosic biomass. International Journal of Forest Engineering, 2(5), 76–84.
51.
go back to reference Lu, F., & Ralph, J. (1997). Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry, 45(7), 2590–2592.CrossRef Lu, F., & Ralph, J. (1997). Derivatization followed by reductive cleavage (DFRC method), a new method for lignin analysis: Protocol for analysis of DFRC monomers. Journal of Agricultural and Food Chemistry, 45(7), 2590–2592.CrossRef
52.
go back to reference Zhang, Y., Zhang, R., Zhang, Y., Ai, M., & Huang, F. (2011). Research progress of analysis methods of lignin structure. Journal of Anhui Agricultural Sciences, 2011(36), 120. Zhang, Y., Zhang, R., Zhang, Y., Ai, M., & Huang, F. (2011). Research progress of analysis methods of lignin structure. Journal of Anhui Agricultural Sciences, 2011(36), 120.
53.
go back to reference Shinde, S. D., Meng, X., Kumar, R., & Ragauskas, A. J. (2018). Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 20(10), 2192–2205.CrossRef Shinde, S. D., Meng, X., Kumar, R., & Ragauskas, A. J. (2018). Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 20(10), 2192–2205.CrossRef
54.
go back to reference Ma, X., Yang, X., Zheng, X., Chen, L., Huang, L., Cao, S., & Akinosho, H. (2015). Toward a further understanding of hydrothermally pretreated holocellulose and isolated pseudo lignin. Cellulose, 22(3), 1687–1696.CrossRef Ma, X., Yang, X., Zheng, X., Chen, L., Huang, L., Cao, S., & Akinosho, H. (2015). Toward a further understanding of hydrothermally pretreated holocellulose and isolated pseudo lignin. Cellulose, 22(3), 1687–1696.CrossRef
55.
go back to reference Meng, X., Pu, Y., Sannigrahi, P., Li, M., Cao, S., & Ragauskas, A. J. (2017). The nature of hololignin. ACS Sustainable Chemistry & Engineering, 6(1), 957–964.CrossRef Meng, X., Pu, Y., Sannigrahi, P., Li, M., Cao, S., & Ragauskas, A. J. (2017). The nature of hololignin. ACS Sustainable Chemistry & Engineering, 6(1), 957–964.CrossRef
56.
go back to reference Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Christopher, P., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2018). Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sustainable Chemistry & Engineering, 6(7), 8711–8718.CrossRef Meng, X., Parikh, A., Seemala, B., Kumar, R., Pu, Y., Christopher, P., Wyman, C. E., Cai, C. M., & Ragauskas, A. J. (2018). Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process. ACS Sustainable Chemistry & Engineering, 6(7), 8711–8718.CrossRef
57.
go back to reference Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., & Wyman, C. E. (2013). Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 110(3), 737–753.CrossRef Kumar, R., Hu, F., Sannigrahi, P., Jung, S., Ragauskas, A. J., & Wyman, C. E. (2013). Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnology and Bioengineering, 110(3), 737–753.CrossRef
58.
go back to reference Hu, F., Jung, S., & Ragauskas, A. (2012). Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 117, 7–12.CrossRef Hu, F., Jung, S., & Ragauskas, A. (2012). Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 117, 7–12.CrossRef
59.
go back to reference Liu, E., Li, M., Das, L., Pu, Y., Frazier, T., Zhao, B., Crocker, M., Ragauskas, A. J., & Shi, J. (2018a). Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustainable Chemistry & Engineering, 6(5), 6612–6623.CrossRef Liu, E., Li, M., Das, L., Pu, Y., Frazier, T., Zhao, B., Crocker, M., Ragauskas, A. J., & Shi, J. (2018a). Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid. ACS Sustainable Chemistry & Engineering, 6(5), 6612–6623.CrossRef
60.
go back to reference Kosa, M. (2012). Direct and multistep conversion of lignin to biofuels. Atlanta: Georgia Institute of Technology. Kosa, M. (2012). Direct and multistep conversion of lignin to biofuels. Atlanta: Georgia Institute of Technology.
61.
go back to reference Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.CrossRef Wei, Z., Zeng, G., Huang, F., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chemistry, 17(5), 2784–2789.CrossRef
62.
go back to reference Das, L., Li, M., Stevens, J., Li, W., Pu, Y., Ragauskas, A. J., & Shi, J. (2018). Characterization and catalytic transfer hydrogenolysis of deep eutectic solvent extracted sorghum lignin to phenolic compounds. ACS Sustainable Chemistry & Engineering, 6(8), 10408–10420.CrossRef Das, L., Li, M., Stevens, J., Li, W., Pu, Y., Ragauskas, A. J., & Shi, J. (2018). Characterization and catalytic transfer hydrogenolysis of deep eutectic solvent extracted sorghum lignin to phenolic compounds. ACS Sustainable Chemistry & Engineering, 6(8), 10408–10420.CrossRef
63.
go back to reference Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies, M., & Zheng, Y. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664–674.CrossRef Li, X., Li, M., Pu, Y., Ragauskas, A. J., Klett, A. S., Thies, M., & Zheng, Y. (2018). Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy, 123, 664–674.CrossRef
64.
go back to reference Zhou, H., Lou, H., Yang, D., Zhu, J., & Qiu, X. (2013). Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Industrial and Engineering Chemistry Research, 52(25), 8464–8470.CrossRef Zhou, H., Lou, H., Yang, D., Zhu, J., & Qiu, X. (2013). Lignosulfonate to enhance enzymatic saccharification of lignocelluloses: Role of molecular weight and substrate lignin. Industrial and Engineering Chemistry Research, 52(25), 8464–8470.CrossRef
65.
go back to reference Xu, Z., Qin, L., Cai, M., Hua, W., & Jin, M. (2018). Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environemental Science and Pollution Research, 25(14), 14171–14181.CrossRef Xu, Z., Qin, L., Cai, M., Hua, W., & Jin, M. (2018). Biodegradation of kraft lignin by newly isolated Klebsiella pneumoniae, Pseudomonas putida, and Ochrobactrum tritici strains. Environemental Science and Pollution Research, 25(14), 14171–14181.CrossRef
66.
go back to reference Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17(11), 4951–4967.CrossRef Salvachúa, D., Karp, E. M., Nimlos, C. T., Vardon, D. R., & Beckham, G. T. (2015). Towards lignin consolidated bioprocessing: Simultaneous lignin depolymerization and product generation by bacteria. Green Chemistry, 17(11), 4951–4967.CrossRef
67.
go back to reference He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5(3), 2302–2311.CrossRef He, Y., Li, X., Ben, H., Xue, X., & Yang, B. (2017). Lipid production from dilute alkali corn stover lignin by Rhodococcus strains. ACS Sustainable Chemistry & Engineering, 5(3), 2302–2311.CrossRef
68.
go back to reference Alvarez, H. M., Mayer, F., Fabritius, D., & Steinbüchel, A. (1996). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Archives of Microbiology, 165(6), 377–386.CrossRef Alvarez, H. M., Mayer, F., Fabritius, D., & Steinbüchel, A. (1996). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Archives of Microbiology, 165(6), 377–386.CrossRef
69.
go back to reference Zhang, D. (2016). Carbon metabolic flux analysis of lipid accumulation mechanism and key genetic modification in Rhodococcus Opacus. Wuxi: Jiangnan University. Zhang, D. (2016). Carbon metabolic flux analysis of lipid accumulation mechanism and key genetic modification in Rhodococcus Opacus. Wuxi: Jiangnan University.
70.
go back to reference Lin, L., Cheng, Y., Pu, Y., Sun, S., Li, X., Jin, M., Pierson, E. A., Gross, D. C., Dale, B. E., & Dai, S. Y. (2016). Systems biology-guided biodesign of consolidated lignin conversion. Green Chemistry, 18(20), 5536–5547.CrossRef Lin, L., Cheng, Y., Pu, Y., Sun, S., Li, X., Jin, M., Pierson, E. A., Gross, D. C., Dale, B. E., & Dai, S. Y. (2016). Systems biology-guided biodesign of consolidated lignin conversion. Green Chemistry, 18(20), 5536–5547.CrossRef
71.
go back to reference Sana, B., Chia, K. H. B., Raghavan, S. S., Ramalingam, B., Nagarajan, N., Seayad, J., & Ghadessy, F. J. (2017). Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnology for Biofuels, 10(1), 32.CrossRef Sana, B., Chia, K. H. B., Raghavan, S. S., Ramalingam, B., Nagarajan, N., Seayad, J., & Ghadessy, F. J. (2017). Development of a genetically programed vanillin-sensing bacterium for high-throughput screening of lignin-degrading enzyme libraries. Biotechnology for Biofuels, 10(1), 32.CrossRef
72.
go back to reference Xie, S., Sun, S., Lin, F., Li, M., Pu, Y., Cheng, Y., Xu, B., Liu, Z. H., da Costa Sousa, L., Dale, B. E., Ragauskas, A. J., Dai, S. Y., & Yuan, J. S. (2019). Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Advancement of Science, 6, 1801980. Xie, S., Sun, S., Lin, F., Li, M., Pu, Y., Cheng, Y., Xu, B., Liu, Z. H., da Costa Sousa, L., Dale, B. E., Ragauskas, A. J., Dai, S. Y., & Yuan, J. S. (2019). Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining. Advancement of Science, 6, 1801980.
73.
go back to reference Liu, Z. H., Le, R. K., Kosa, M., Yang, B., Yuan, J. S., & Ragauskas, A. J. (2019b). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef Liu, Z. H., Le, R. K., Kosa, M., Yang, B., Yuan, J. S., & Ragauskas, A. J. (2019b). Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 105, 349–362.CrossRef
74.
go back to reference Tuskan, G. A., Muchero, W., Tschaplinski, T. J., & Ragauskas, A. J. (2019). Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Current Opinion in Biotechnology, 56, 250–257.CrossRef Tuskan, G. A., Muchero, W., Tschaplinski, T. J., & Ragauskas, A. J. (2019). Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Current Opinion in Biotechnology, 56, 250–257.CrossRef
75.
go back to reference Adamski, J. (2012). Genome-wide association studies with metabolomics. Genome Medicine, 4(4), 34.CrossRef Adamski, J. (2012). Genome-wide association studies with metabolomics. Genome Medicine, 4(4), 34.CrossRef
76.
go back to reference Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90(1), 7–24.CrossRef Visscher, P. M., Brown, M. A., McCarthy, M. I., & Yang, J. (2012). Five years of GWAS discovery. American Journal of Human Genetics, 90(1), 7–24.CrossRef
77.
go back to reference Wei, L., Jian, H., Lu, K., Yin, N., Wang, J., Duan, X., Li, W., Liu, L., Xu, X., & Wang, R. (2017). Genetic and transcriptomic analyses of lignin-and lodging-related traits in Brassica napus. Theoretical and Applied Genetics, 130(9), 1961–1973.CrossRef Wei, L., Jian, H., Lu, K., Yin, N., Wang, J., Duan, X., Li, W., Liu, L., Xu, X., & Wang, R. (2017). Genetic and transcriptomic analyses of lignin-and lodging-related traits in Brassica napus. Theoretical and Applied Genetics, 130(9), 1961–1973.CrossRef
78.
go back to reference Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-Lizarazu, O., Brown, P. J., Acharya, C. B., & Mitchell, S. E. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 453–458.CrossRef Morris, G. P., Ramu, P., Deshpande, S. P., Hash, C. T., Shah, T., Upadhyaya, H. D., Riera-Lizarazu, O., Brown, P. J., Acharya, C. B., & Mitchell, S. E. (2013). Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 110(2), 453–458.CrossRef
79.
go back to reference Umezawa, T. (2018). Lignin modification in planta for valorization. Phytochemistry Reviews, 17(6), 1305–1327.CrossRef Umezawa, T. (2018). Lignin modification in planta for valorization. Phytochemistry Reviews, 17(6), 1305–1327.CrossRef
80.
go back to reference Takeda, Y., Koshiba, T., Tobimatsu, Y., Suzuki, S., Murakami, S., Yamamura, M., Rahman, M. M., Takano, T., Hattori, T., & Sakamoto, M. (2017). Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 246(2), 337–349.CrossRef Takeda, Y., Koshiba, T., Tobimatsu, Y., Suzuki, S., Murakami, S., Yamamura, M., Rahman, M. M., Takano, T., Hattori, T., & Sakamoto, M. (2017). Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 246(2), 337–349.CrossRef
81.
go back to reference Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie. International Edition, 55(29), 8164–8215.CrossRef Rinaldi, R., Jastrzebski, R., Clough, M. T., Ralph, J., Kennema, M., Bruijnincx, P. C., & Weckhuysen, B. M. (2016). Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie. International Edition, 55(29), 8164–8215.CrossRef
82.
go back to reference Simmons, B. A., Loqué, D., & Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13(3), 312–319.CrossRef Simmons, B. A., Loqué, D., & Ralph, J. (2010). Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 13(3), 312–319.CrossRef
83.
go back to reference Li, X., He, Y., Zhang, L., Xu, Z., Ben, H., Gaffrey, M. J., Yang, Y., Yang, S., Yuan, J. S., Qian, W.-J., & Yang, B. (2019). Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 12(1), 60.CrossRef Li, X., He, Y., Zhang, L., Xu, Z., Ben, H., Gaffrey, M. J., Yang, Y., Yang, S., Yuan, J. S., Qian, W.-J., & Yang, B. (2019). Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of Rhodococci strains. Biotechnology for Biofuels, 12(1), 60.CrossRef
84.
go back to reference Liu, Z. H., Olson, M. L., Shinde, S., Wang, X., Hao, N., Yoo, C. G., Bhagia, S., Dunlap, J. R., Pu, Y., Kao, K. C., Ragauskas, A. J., Jin, M., & Yuan, J. S. (2017). Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 19(20), 4939–4955.CrossRef Liu, Z. H., Olson, M. L., Shinde, S., Wang, X., Hao, N., Yoo, C. G., Bhagia, S., Dunlap, J. R., Pu, Y., Kao, K. C., Ragauskas, A. J., Jin, M., & Yuan, J. S. (2017). Synergistic maximization of the carbohydrate output and lignin processability by combinatorial pretreatment. Green Chemistry, 19(20), 4939–4955.CrossRef
85.
go back to reference Chen, H. Z. (2013). Modern solid state fermentation: Theory and practice. Dordrecht: Springer.CrossRef Chen, H. Z. (2013). Modern solid state fermentation: Theory and practice. Dordrecht: Springer.CrossRef
86.
go back to reference Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass & Bioenergy, 93, 13–24.CrossRef Liu, Z. H., & Chen, H. Z. (2016). Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass. Biomass & Bioenergy, 93, 13–24.CrossRef
87.
go back to reference Chen, H. Z., & Li, Z. H. (2007). Gas dual-dynamic solid state fermentation technique and apparatus. US7183074. Chen, H. Z., & Li, Z. H. (2007). Gas dual-dynamic solid state fermentation technique and apparatus. US7183074.
88.
go back to reference Chen, H. Z., Zhao, Z. M., & Li, H. Q. (2014b). The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme and Microbial Technology, 58, 14–21.CrossRef Chen, H. Z., Zhao, Z. M., & Li, H. Q. (2014b). The effect of gas double-dynamic on mass distribution in solid-state fermentation. Enzyme and Microbial Technology, 58, 14–21.CrossRef
89.
go back to reference Chen, H. Z., Shao, M. X., & Li, H. Q. (2014a). Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). Enzyme and Microbial Technology, 56, 35–39.CrossRef Chen, H. Z., Shao, M. X., & Li, H. Q. (2014a). Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF). Enzyme and Microbial Technology, 56, 35–39.CrossRef
90.
go back to reference Zhao, Z. M., Wang, L., & Chen, H. Z. (2015). Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model. Process Biochemistry, 50(2), 157–164.CrossRef Zhao, Z. M., Wang, L., & Chen, H. Z. (2015). Variable pressure pulsation frequency optimization in gas double-dynamic solid-state fermentation (GDSSF) based on heat balance model. Process Biochemistry, 50(2), 157–164.CrossRef
91.
go back to reference Chatterjee, A., DeLorenzo, D. M., Carr, R., & Moon, T. S. (2020). Bioconversion of renewable feedstocks by Rhodococcus opacus. Current Opinion in Biotechnology, 64, 10–16.CrossRef Chatterjee, A., DeLorenzo, D. M., Carr, R., & Moon, T. S. (2020). Bioconversion of renewable feedstocks by Rhodococcus opacus. Current Opinion in Biotechnology, 64, 10–16.CrossRef
Metadata
Title
Lignin Valorization in Biorefineries Through Integrated Fractionation, Advanced Characterization, and Fermentation Intensification Strategies
Authors
Zhi-Min Zhao
Yan Chen
Xianzhi Meng
Siying Zhang
Jingya Wang
Zhi-Hua Liu
Arthur J. Ragauskas
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_14