Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2023

25-04-2023

Limit Equilibrium of a Piecewise Homogeneous Plane with Small-Scale Interfacial Shear Cracks at a Corner Point in the Presence of a Loaded Internal Semi-Infinite Crack

Authors: V. M. Nazarenko, A. L. Kipnis

Published in: Mechanics of Composite Materials | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A plane static symmetric problem of theory of elasticity for a piecewise homogeneous isotropic plane with an interface in the form of sides of an angle, containing small-scale interfacial shear cracks at a corner point and a loaded internal semi-infinite crack, was considered. The exact solution to this problem was constructed by the Wiener-Hopf method in combination with the apparatus of the Mellin integral transform. The stress intensity factor at the tips of interfacial cracks was determined and the nature of the change in the breaking load was studied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Nonclassical problems in the fracture mechanics of composites with interacting cracks,” Int. Appl. Mech., 51, No. 1, 64-84 (2015).CrossRef
2.
go back to reference V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No 3, 371-384 (2010).CrossRef V. L. Bogdanov, “Influence of initial stresses on fracture of composite materials containing interacting cracks,” J. Math. Sci., 165, No 3, 371-384 (2010).CrossRef
3.
go back to reference A. N. Guz, “Establishing the Foundations of the Mechanics of Fracture of Materials Compressed Along Cracks (Review),” Int. Appl. Mech., 50, No. 1, 1-57 (2014).CrossRef A. N. Guz, “Establishing the Foundations of the Mechanics of Fracture of Materials Compressed Along Cracks (Review),” Int. Appl. Mech., 50, No. 1, 1-57 (2014).CrossRef
4.
go back to reference G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw–Hill, New York (1979). G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw–Hill, New York (1979).
5.
go back to reference M. K. Kassir and G. C. Sih, Mechanics of Fracture. Three Dimensional Crack Problems, Noordhoff, Leyden (1975). M. K. Kassir and G. C. Sih, Mechanics of Fracture. Three Dimensional Crack Problems, Noordhoff, Leyden (1975).
6.
go back to reference M. L. Williams, “The stresses around a fault or cracks in dissimilar media,” Bulletin of the Seismological Society of America, 49, 199-204 (1959).CrossRef M. L. Williams, “The stresses around a fault or cracks in dissimilar media,” Bulletin of the Seismological Society of America, 49, 199-204 (1959).CrossRef
7.
go back to reference J. R. Rice and G. C. Sih, “Plane problem of cracks in dissimilar media,” Trans. ASME. J. Appl. Mech., 32, 418-423 (1965).CrossRef J. R. Rice and G. C. Sih, “Plane problem of cracks in dissimilar media,” Trans. ASME. J. Appl. Mech., 32, 418-423 (1965).CrossRef
8.
go back to reference E. L. Nahmejn, B. M. Nuller, and M. B. Ryvkin, “Deformation of a composite elastic plane weakened by a periodic system of randomly loaded slots [in Russian],” Appl. Math. and Mech., 45, No. 6, 1088-1094 (1981). E. L. Nahmejn, B. M. Nuller, and M. B. Ryvkin, “Deformation of a composite elastic plane weakened by a periodic system of randomly loaded slots [in Russian],” Appl. Math. and Mech., 45, No. 6, 1088-1094 (1981).
9.
go back to reference M. P. Savruk, “Fracture mechanics and strength of materials,” Ref. Guide: In 4 Vols. Vol. 2. Stress Intensity Factors in Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1988). M. P. Savruk, “Fracture mechanics and strength of materials,” Ref. Guide: In 4 Vols. Vol. 2. Stress Intensity Factors in Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1988).
10.
go back to reference V. V. Loboda and A. E. Sheveleva, “Determining prefracture zones at a crack tip between two elastic orthotropic bodies,” Int. Appl. Mech., 39, No. 5, 566-572 (2003).CrossRef V. V. Loboda and A. E. Sheveleva, “Determining prefracture zones at a crack tip between two elastic orthotropic bodies,” Int. Appl. Mech., 39, No. 5, 566-572 (2003).CrossRef
11.
go back to reference M. Comninou, “The interface crack,” Trans. ASME. J. Appl. Mech., 44, No 4, 631-636 (1977).CrossRef M. Comninou, “The interface crack,” Trans. ASME. J. Appl. Mech., 44, No 4, 631-636 (1977).CrossRef
12.
go back to reference J. Dundurs and M. Comninou, “Revision and perspective of the interface crack problem,” Mech. Compos. Mater., No. 3, 387-396 (1979). J. Dundurs and M. Comninou, “Revision and perspective of the interface crack problem,” Mech. Compos. Mater., No. 3, 387-396 (1979).
13.
go back to reference I. V. Simonov, “Crack at the interface in a uniform stress field,” Mech. Compos. Mater. No. 6, 969-976 (1985). I. V. Simonov, “Crack at the interface in a uniform stress field,” Mech. Compos. Mater. No. 6, 969-976 (1985).
14.
go back to reference V. I. Ostryk, “Friction contact of the edges of an interface crack under the conditions of tension and shear,” Mater. Sci., 39, No. 2, 214-224 (2003).CrossRef V. I. Ostryk, “Friction contact of the edges of an interface crack under the conditions of tension and shear,” Mater. Sci., 39, No. 2, 214-224 (2003).CrossRef
15.
go back to reference A. L. Kipnis, “On an approach to solving the problems of interface cracks originated at the corner points of a piecewise homogeneous body,” Dop. NANU, No. 10, 51-55 (2014). A. L. Kipnis, “On an approach to solving the problems of interface cracks originated at the corner points of a piecewise homogeneous body,” Dop. NANU, No. 10, 51-55 (2014).
16.
go back to reference G. P. Cherepanov “ Plastic break lines at the tip of a crack [in Russian],” Appl. Math. and Mech., 40, No. 4, 720-728(1976). G. P. Cherepanov “ Plastic break lines at the tip of a crack [in Russian],” Appl. Math. and Mech., 40, No. 4, 720-728(1976).
17.
go back to reference V. M. Nazarenko and A. L. Kipnis “Influence of interface shear cracks located near the angular point of the interface in a bi-homogeneous body on the stress state formed in the vicinity of this point,” J. Math. Sci., 261, No 1, 151-161 (2022).CrossRef V. M. Nazarenko and A. L. Kipnis “Influence of interface shear cracks located near the angular point of the interface in a bi-homogeneous body on the stress state formed in the vicinity of this point,” J. Math. Sci., 261, No 1, 151-161 (2022).CrossRef
18.
go back to reference Ja. S. Ufljand, Integral Transforms in Problems of Elasticity Theory [in Russian], Nauka, Leningrad (1967). Ja. S. Ufljand, Integral Transforms in Problems of Elasticity Theory [in Russian], Nauka, Leningrad (1967).
19.
go back to reference F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977). F. D. Gakhov, Boundary-Value Problems [in Russian], Nauka, Moscow (1977).
20.
go back to reference B. Noble, Methods Based on the Wiener‐Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, New York (1958). B. Noble, Methods Based on the Wiener‐Hopf Technique for the Solution of Partial Differential Equations, Pergamon Press, New York (1958).
21.
go back to reference V. M. Nazarenko and A. L. Kipnis “Semi-infinite crack in piece-homogeneous plane with non-smooth interface of media,” Structural Integrity, 5, 174-177 (2019).CrossRef V. M. Nazarenko and A. L. Kipnis “Semi-infinite crack in piece-homogeneous plane with non-smooth interface of media,” Structural Integrity, 5, 174-177 (2019).CrossRef
Metadata
Title
Limit Equilibrium of a Piecewise Homogeneous Plane with Small-Scale Interfacial Shear Cracks at a Corner Point in the Presence of a Loaded Internal Semi-Infinite Crack
Authors
V. M. Nazarenko
A. L. Kipnis
Publication date
25-04-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10104-y

Other articles of this Issue 2/2023

Mechanics of Composite Materials 2/2023 Go to the issue

Premium Partners