Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Linear and Nonlinear Heat-Transport Equations

Authors : Antonio Sellitto, Vito Antonio Cimmelli, David Jou

Published in: Mesoscopic Theories of Heat Transport in Nanosystems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotechnology, like biotechnology and information technology, nowadays is a growing industry with the potential to greatly change the world. Engineering of nanosystems rapidly developed in recent years, and it actually allows to design and develop mechanical, optical and electronic devices, the characteristic sizes of which may be of the order of tens of nanometers. Nowadays, nanotechnology is also fighting its way in medicine, offering some exciting possibilities which few years ago were only imagined. Devices operating on nanometer length scale always provide new challenges, especially regarding their thermo-mechanical properties, and researchers face great challenges in thermal management and analysis under the extreme conditions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A.: Second sound in solid helium. Phys. Rev. Lett. 16, 789–791 (1966)CrossRef Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A.: Second sound in solid helium. Phys. Rev. Lett. 16, 789–791 (1966)CrossRef
2.
3.
go back to reference Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the modified Grad-type approach: formulation. J. Phys. A: Math. Gen. 37, 9805–9829 (2004)CrossRefMATHMathSciNet Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the modified Grad-type approach: formulation. J. Phys. A: Math. Gen. 37, 9805–9829 (2004)CrossRefMATHMathSciNet
4.
go back to reference Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow. J. Phys. A: Math. Gen. 38, 8781–8802 (2005)CrossRefMATHMathSciNet Banach, Z., Larecki, W.: Nine-moment phonon hydrodynamics based on the maximum-entropy closure: one-dimensional flow. J. Phys. A: Math. Gen. 38, 8781–8802 (2005)CrossRefMATHMathSciNet
5.
go back to reference Banach, Z., Larecki, W.: Chapman-Enskog method for a phonon gas with finite heat flux. J. Phys. A: Math. Gen. 41, 375502 (18 pp.) (2008) Banach, Z., Larecki, W.: Chapman-Enskog method for a phonon gas with finite heat flux. J. Phys. A: Math. Gen. 41, 375502 (18 pp.) (2008)
6.
go back to reference Barletta, A., Zanchini, E.: Unsteady heat conduction by internal-energy waves in solids. Phys. Rev. B 55, 14208 (5 pp.) (1997) Barletta, A., Zanchini, E.: Unsteady heat conduction by internal-energy waves in solids. Phys. Rev. B 55, 14208 (5 pp.) (1997)
7.
go back to reference Boltzmann, L.: Leçons sur la Théorie des Gaz. Gauthier-Villars, Paris (1902) Boltzmann, L.: Leçons sur la Théorie des Gaz. Gauthier-Villars, Paris (1902)
8.
go back to reference Bubnov, V.A.: Wave concepts in the theory of heat. Int. J. Heat Mass Transf. 19, 175–184 (1976)CrossRefMATH Bubnov, V.A.: Wave concepts in the theory of heat. Int. J. Heat Mass Transf. 19, 175–184 (1976)CrossRefMATH
9.
go back to reference Cahill, D.C., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)CrossRef Cahill, D.C., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)CrossRef
10.
go back to reference Cao, B.-Y., Guo, Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (6 pp.) (2007) Cao, B.-Y., Guo, Z.-Y.: Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102, 053503 (6 pp.) (2007)
11.
go back to reference Casas-Vázquez, J., Jou, D.: Nonequilibrium equations of state and thermal waves. Acta Physiol. Hung. 66, 99–115 (1989) Casas-Vázquez, J., Jou, D.: Nonequilibrium equations of state and thermal waves. Acta Physiol. Hung. 66, 99–115 (1989)
12.
13.
go back to reference Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sc. 247, 431–433 (1958)MathSciNet Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. C. R. Acad. Sc. 247, 431–433 (1958)MathSciNet
14.
go back to reference Chen, G.: Ballistic-diffusion equations for transient heat conduction from nano to macroscales. J. Heat Transf. - T. ASME 124, 320–328 (2001)CrossRef Chen, G.: Ballistic-diffusion equations for transient heat conduction from nano to macroscales. J. Heat Transf. - T. ASME 124, 320–328 (2001)CrossRef
15.
go back to reference Chen, G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)CrossRef Chen, G.: Ballistic-diffusive heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001)CrossRef
16.
go back to reference Chen, G.: Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005) Chen, G.: Nanoscale Energy Transport and Conversion - A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, Oxford (2005)
17.
18.
go back to reference Cimmelli, V.A.: An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48, 113510 (13 pp.) (2007) Cimmelli, V.A.: An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys. 48, 113510 (13 pp.) (2007)
19.
go back to reference Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)CrossRefMATH Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)CrossRefMATH
20.
go back to reference Cimmelli, V.A., Frischmuth, K.: Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction. Physica B 400, 257–265 (2007)CrossRef Cimmelli, V.A., Frischmuth, K.: Gradient generalization to the extended thermodynamic approach and diffusive-hyperbolic heat conduction. Physica B 400, 257–265 (2007)CrossRef
21.
go back to reference Cimmelli, V.A., Sellitto, A., Triani, V.: A new thermodynamic framework for second-grade Korteweg-type viscous fluids. J. Math. Phys. 50, 053101 (16 pp.) (2009) Cimmelli, V.A., Sellitto, A., Triani, V.: A new thermodynamic framework for second-grade Korteweg-type viscous fluids. J. Math. Phys. 50, 053101 (16 pp.) (2009)
22.
go back to reference Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (13 pp.) (2009) Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (13 pp.) (2009)
23.
go back to reference Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (9 pp.) (2010) Cimmelli, V.A., Sellitto, A., Jou, D.: Nonequilibrium temperatures, heat waves, and nonlinear heat transport equations. Phys. Rev. B 81, 054301 (9 pp.) (2010)
24.
go back to reference Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (9 pp.) (2010) Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (9 pp.) (2010)
25.
go back to reference Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)CrossRefMathSciNet Cimmelli, V.A., Jou, D., Ruggeri, T., Ván, P.: Entropy principle and recent results in non-equilibrium theories. Entropy 16, 1756–1807 (2014)CrossRefMathSciNet
26.
go back to reference Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 80, 135–158 (1982)CrossRefMATHMathSciNet Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Ration. Mech. Anal. 80, 135–158 (1982)CrossRefMATHMathSciNet
27.
go back to reference De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, 164314 (2014)CrossRef De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, 164314 (2014)CrossRef
28.
go back to reference De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Thermal conductivity of group-IV semiconductors from a kinetic-collective model. Proc R. Soc. A 470, 20140371 (12 pp.) (2014) De Tomas, C., Cantarero, A., Lopeandia, A.F., Alvarez, F.X.: Thermal conductivity of group-IV semiconductors from a kinetic-collective model. Proc R. Soc. A 470, 20140371 (12 pp.) (2014)
29.
go back to reference Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (6 pp.) (2011) Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (6 pp.) (2011)
30.
go back to reference Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (8 pp.) (2012) Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (8 pp.) (2012)
31.
go back to reference Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Temperature in nonequilibrium states and non-Fourier heat conduction. Phys. Rev. E 87, 032150 (8 pp.) (2013) Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Temperature in nonequilibrium states and non-Fourier heat conduction. Phys. Rev. E 87, 032150 (8 pp.) (2013)
32.
33.
go back to reference Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef Ferry, D.K., Goodnick, S.M.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRef
35.
go back to reference Fourier, J.: The Analytical Theory of Heat. Cambridge University Press, Cambridge (1878)MATH Fourier, J.: The Analytical Theory of Heat. Cambridge University Press, Cambridge (1878)MATH
36.
go back to reference Fryer, M.J., Struchtrup, H.: Moment model and boundary conditions for energy transport in the phonon gas. Contin. Mech. Thermodyn. 26, 593–618 (2014)CrossRefMathSciNet Fryer, M.J., Struchtrup, H.: Moment model and boundary conditions for energy transport in the phonon gas. Contin. Mech. Thermodyn. 26, 593–618 (2014)CrossRefMathSciNet
37.
go back to reference Grmela, M., Lebon, G., Dauby, P.C., Bousmina, M.: Ballistic-diffusive heat conduction at nanoscale: GENERIC approach. Phys. Lett. A 339, 237–245 (2005)CrossRefMATH Grmela, M., Lebon, G., Dauby, P.C., Bousmina, M.: Ballistic-diffusive heat conduction at nanoscale: GENERIC approach. Phys. Lett. A 339, 237–245 (2005)CrossRefMATH
38.
go back to reference Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef
39.
go back to reference Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)CrossRef
40.
go back to reference Hill, T.L.: Thermodynamics of Small Systems. Dover, New York (1994) Hill, T.L.: Thermodynamics of Small Systems. Dover, New York (1994)
41.
go back to reference Jiaung, W.-S., Ho, J.-R.: Lattice-Boltzmann modeling of phonon hydrodynamics. Phys. Rev. E 6, 066710 (13 pp.) (2008) Jiaung, W.-S., Ho, J.-R.: Lattice-Boltzmann modeling of phonon hydrodynamics. Phys. Rev. E 6, 066710 (13 pp.) (2008)
43.
go back to reference Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)CrossRefMATH Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, 4th revised edn. Springer, Berlin (2010)CrossRefMATH
44.
go back to reference Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)CrossRefMathSciNet Jou, D., Sellitto, A., Alvarez, F.X.: Heat waves and phonon-wall collisions in nanowires. Proc. R. Soc. A 467, 2520–2533 (2011)CrossRefMathSciNet
45.
go back to reference Larecki, W., Banach, Z.: Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas. J. Phys. A: Math. Theor. 43, 385501 (24 pp.) (2010) Larecki, W., Banach, Z.: Consistency of the phenomenological theories of wave-type heat transport with the hydrodynamics of a phonon gas. J. Phys. A: Math. Theor. 43, 385501 (24 pp.) (2010)
46.
go back to reference Larecki, W., Banach, Z.: Influence of nonlinearity of the phonon dispersion relation in wave velocities in the four-moment maximum entropy phonon hydrodynamics. Physica D 266, 65–79 (2014)CrossRefMATHMathSciNet Larecki, W., Banach, Z.: Influence of nonlinearity of the phonon dispersion relation in wave velocities in the four-moment maximum entropy phonon hydrodynamics. Physica D 266, 65–79 (2014)CrossRefMATHMathSciNet
47.
go back to reference Larecki, W., Piekarski, S.: Phonon gas hydrodynamics based on the maximum entropy principle and the extended field theory of a rigid conductor of heat. Arch. Mech. 46, 163–190 (1991) Larecki, W., Piekarski, S.: Phonon gas hydrodynamics based on the maximum entropy principle and the extended field theory of a rigid conductor of heat. Arch. Mech. 46, 163–190 (1991)
48.
go back to reference Larecki, W., Piekarski, S.: Symmetric conservative form of low-temperature phonon gas hydrodynamics I. - Kinetic aspect of the theory. Nuovo Cimento D 13, 31–53 (1991)CrossRef Larecki, W., Piekarski, S.: Symmetric conservative form of low-temperature phonon gas hydrodynamics I. - Kinetic aspect of the theory. Nuovo Cimento D 13, 31–53 (1991)CrossRef
49.
go back to reference Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-Equilib. Thermodyn. 39, 35–59 (2014)CrossRef Lebon, G.: Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-Equilib. Thermodyn. 39, 35–59 (2014)CrossRef
50.
go back to reference Lebon, G., Jou, D., Casas-Vázquez, J., Muschik, W.: Weakly nonlocal and nonlinear heat transport in rigid solids. J. Non-Equilib. Thermodyn. 23, 176–191 (1998)CrossRefMATH Lebon, G., Jou, D., Casas-Vázquez, J., Muschik, W.: Weakly nonlocal and nonlinear heat transport in rigid solids. J. Non-Equilib. Thermodyn. 23, 176–191 (1998)CrossRefMATH
51.
go back to reference Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRefMATH Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Nonequilibrium Thermodynamics. Springer, Berlin (2008)CrossRefMATH
52.
go back to reference Lebon, G., Machrafi, H., Grmela, M., Dubois, C.: An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc. R. Soc. A 467, 3241–3256 (2011)CrossRefMATHMathSciNet Lebon, G., Machrafi, H., Grmela, M., Dubois, C.: An extended thermodynamic model of transient heat conduction at sub-continuum scales. Proc. R. Soc. A 467, 3241–3256 (2011)CrossRefMATHMathSciNet
53.
go back to reference Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984)CrossRef Levermore, C.D.: Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984)CrossRef
54.
go back to reference Luikov, A.V., Bubnov, V.A., Soloviev, I.: On wave solutions of the heat-conduction equation. Int. J. Heat Mass Transf. 19, 245–248 (1976)CrossRef Luikov, A.V., Bubnov, V.A., Soloviev, I.: On wave solutions of the heat-conduction equation. Int. J. Heat Mass Transf. 19, 245–248 (1976)CrossRef
55.
go back to reference Mongioví, M.S., Jou, D.: Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence. Phys. Rev. B 75, 024507 (14 pp.) (2007) Mongioví, M.S., Jou, D.: Thermodynamical derivation of a hydrodynamical model of inhomogeneous superfluid turbulence. Phys. Rev. B 75, 024507 (14 pp.) (2007)
56.
go back to reference Mongiovì, M.S., Jou, D., Sciacca, M.: Energy and temperature of superfluid turbulent vortex tangles. Phys. Rev. B 75, 214514 (10 pp.) (2007) Mongiovì, M.S., Jou, D., Sciacca, M.: Energy and temperature of superfluid turbulent vortex tangles. Phys. Rev. B 75, 214514 (10 pp.) (2007)
57.
go back to reference Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefMATH Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn. Springer, New York (1998)CrossRefMATH
58.
go back to reference Narayanamurti, V., Dynes, R.D.: Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972)CrossRef Narayanamurti, V., Dynes, R.D.: Observation of second sound in bismuth. Phys. Rev. Lett. 28, 1461–1465 (1972)CrossRef
59.
go back to reference Peshkov, V.: Second sound in helium II. J. Phys. USSR 8, 381–383 (1944) Peshkov, V.: Second sound in helium II. J. Phys. USSR 8, 381–383 (1944)
60.
go back to reference Peshkov, V.: Determination of the velocity of propagation of the second sound in helium II. J. Phys. USSR 10, 389–398 (1946) Peshkov, V.: Determination of the velocity of propagation of the second sound in helium II. J. Phys. USSR 10, 389–398 (1946)
61.
go back to reference Reissland, J.A.: The Physics of Phonons. Wiley, London (1973) Reissland, J.A.: The Physics of Phonons. Wiley, London (1973)
62.
go back to reference Saluto, L., Mongioví, M.S., Jou, D.: Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component. Z. Angew. Math. Phys. 65, 531–548 (2014)CrossRefMATHMathSciNet Saluto, L., Mongioví, M.S., Jou, D.: Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component. Z. Angew. Math. Phys. 65, 531–548 (2014)CrossRefMATHMathSciNet
63.
go back to reference Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A. 378, 2471–2477 (2014)CrossRefMATHMathSciNet Sciacca, M., Sellitto, A., Jou, D.: Transition to ballistic regime for heat transport in helium II. Phys. Lett. A. 378, 2471–2477 (2014)CrossRefMATHMathSciNet
64.
go back to reference Sellitto, A., Cimmelli, V.A.: A continuum approach to thermomass theory. J. Heat Transf. - T. ASME 134, 112402 (6 pp.) (2012) Sellitto, A., Cimmelli, V.A.: A continuum approach to thermomass theory. J. Heat Transf. - T. ASME 134, 112402 (6 pp.) (2012)
65.
go back to reference Sellitto, A., Cimmelli, V.A.: Flux limiters in radial heat transport in silicon nanolayers. J. Heat Transf. - T. ASME 136, 071301 (6 pp.) (2014) Sellitto, A., Cimmelli, V.A.: Flux limiters in radial heat transport in silicon nanolayers. J. Heat Transf. - T. ASME 136, 071301 (6 pp.) (2014)
66.
go back to reference Sellitto, A., Cimmelli, V.A., Jou, D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Physica D 241, 1344–1350 (2012)CrossRefMATH Sellitto, A., Cimmelli, V.A., Jou, D.: Analysis of three nonlinear effects in a continuum approach to heat transport in nanosystems. Physica D 241, 1344–1350 (2012)CrossRefMATH
67.
go back to reference Serdyukov, S.I.: Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics. Theor. Found. Chem. Eng. 47, 89–103 (2013)CrossRef Serdyukov, S.I.: Higher order heat and mass transfer equations and their justification in extended irreversible thermodynamics. Theor. Found. Chem. Eng. 47, 89–103 (2013)CrossRef
68.
go back to reference Sharma, K.R.: Damped Wave Transport and Relaxation. Elsevier, Amsterdam (2005) Sharma, K.R.: Damped Wave Transport and Relaxation. Elsevier, Amsterdam (2005)
70.
go back to reference Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 15, 369–371 (1972)CrossRef Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 15, 369–371 (1972)CrossRef
71.
go back to reference Triani, V., Cimmelli, V.A.: Anisotropic heat transport in rigid solids. J. Non-Equilib. Thermodyn. 37, 377–392 (2012)CrossRefMATH Triani, V., Cimmelli, V.A.: Anisotropic heat transport in rigid solids. J. Non-Equilib. Thermodyn. 37, 377–392 (2012)CrossRefMATH
72.
go back to reference Tzou, D.Y.: A unified field approach for heat conduction from micro-to-macro-scales. J. Heat Transf. - T. ASME 117, 8–16 (1995)CrossRef Tzou, D.Y.: A unified field approach for heat conduction from micro-to-macro-scales. J. Heat Transf. - T. ASME 117, 8–16 (1995)CrossRef
73.
go back to reference Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH Tzou, D.Y.: Nonlocal behavior in phonon transport. Int. J. Heat Mass Transf. 54, 475–481 (2011)CrossRefMATH
74.
go back to reference Tzou, D.Y.: Longitudinal and transverse phonon transport in dielectric crystals. J. Heat Transf. - T. ASME 136, 042401 (5 pp.) (2014) Tzou, D.Y.: Longitudinal and transverse phonon transport in dielectric crystals. J. Heat Transf. - T. ASME 136, 042401 (5 pp.) (2014)
75.
go back to reference Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, Chichester (2014) Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, 2nd edn. Wiley, Chichester (2014)
76.
go back to reference Tzou, D.Y., Guo, Z.-Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)CrossRef Tzou, D.Y., Guo, Z.-Y.: Nonlocal behavior in thermal lagging. Int. J. Therm. Sci. 49, 1133–1137 (2010)CrossRef
78.
go back to reference Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. (Berlin) 524, 470–478 (2012) Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. (Berlin) 524, 470–478 (2012)
79.
80.
go back to reference Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sc. 246, 3154–3155 (1958)MathSciNet Vernotte, P.: Les paradoxes de la théorie continue de l’équation de la chaleur. C. R. Acad. Sc. 246, 3154–3155 (1958)MathSciNet
81.
go back to reference Volz, S. (ed.): Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Springer, Berlin (2010) Volz, S. (ed.): Thermal Nanosystems and Nanomaterials (Topics in Applied Physics). Springer, Berlin (2010)
82.
go back to reference Wang, M., Cao, B.-Y., Guo, Z.-Y.: General heat conduction equations based on the thermomass theory. Front. Heat Mass Transf. 1, 013004 (8 pp.) (2010) Wang, M., Cao, B.-Y., Guo, Z.-Y.: General heat conduction equations based on the thermomass theory. Front. Heat Mass Transf. 1, 013004 (8 pp.) (2010)
83.
go back to reference Wang, M., Yang, N., Guo, Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (7 pp.) (2011) Wang, M., Yang, N., Guo, Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (7 pp.) (2011)
84.
go back to reference Ward, J.C., Wilks, J.: The velocity of second sound in liquid helium near the absolute zero. Philos. Mag. 42, 314–316 (1951)CrossRef Ward, J.C., Wilks, J.: The velocity of second sound in liquid helium near the absolute zero. Philos. Mag. 42, 314–316 (1951)CrossRef
85.
go back to reference Zanchini, E.: Hyperbolic heat-conduction theories and nondecreasing entropy. Phys. Rev. B 60, 991–997 (1999)CrossRef Zanchini, E.: Hyperbolic heat-conduction theories and nondecreasing entropy. Phys. Rev. B 60, 991–997 (1999)CrossRef
86.
go back to reference Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007) Zhang, Z.M.: Nano/Microscale Heat Transfer. McGraw-Hill, New York (2007)
Metadata
Title
Linear and Nonlinear Heat-Transport Equations
Authors
Antonio Sellitto
Vito Antonio Cimmelli
David Jou
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-27206-1_2

Premium Partners