Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2014

01-04-2014

Linear dynamical analysis of fractionally damped beams and rods

Authors: D. Dönmez Demir, N. Bildik, B. G. Sınır

Published in: Journal of Engineering Mathematics | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The aim of this study is to develop a general model for beams and rods with fractional derivatives. Fractional time derivatives can represent the damping term in dynamical models of continuous systems. Linear differential operators with spatial derivatives make it possible to generalize a wide range of problems. The method of multiple scales is directly applied to equations of motion. For the approximate solution, the amplitude and phase modulation equations are obtained in terms of the operators. Stability boundaries are derived from the solvability condition. It is shown that a fractional derivative influences the stability boundaries, natural frequencies, and amplitudes of vibrations. The solution procedure may be applied to many problems with linear vibrations of continuous systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52 Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63(010801):1–52
2.
go back to reference Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67ADSCrossRefMathSciNet Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67ADSCrossRefMathSciNet
3.
go back to reference Gaul L (1999) The influence of damping on waves and vibrations. Mech Syst Signal Process 13(1):1–30ADSCrossRef Gaul L (1999) The influence of damping on waves and vibrations. Mech Syst Signal Process 13(1):1–30ADSCrossRef
4.
go back to reference Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C Mech Syst Mach Elem Manuf 42(4):825–837CrossRef Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C Mech Syst Mach Elem Manuf 42(4):825–837CrossRef
5.
go back to reference French M, Rogers J (2001) A survey of fractional calculus for structural dynamics applications. In: IMAC-IX: a conference on structural dynamics, Kissimmee, vol 1, pp 305–309 French M, Rogers J (2001) A survey of fractional calculus for structural dynamics applications. In: IMAC-IX: a conference on structural dynamics, Kissimmee, vol 1, pp 305–309
6.
go back to reference Rossikhin YA, Shitikova MV (2004) Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib Digest 36(1):3–26CrossRefMathSciNet Rossikhin YA, Shitikova MV (2004) Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib Digest 36(1):3–26CrossRefMathSciNet
7.
go back to reference Xu M, Tan W (2006) Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics. Sci China Ser G Phys Mech Astron 49(3):257–272ADSCrossRefMATH Xu M, Tan W (2006) Intermediate processes and critical phenomena: theory, method and progress of fractional operators and their applications to modern mechanics. Sci China Ser G Phys Mech Astron 49(3):257–272ADSCrossRefMATH
8.
go back to reference Malinowska AB, Torres DFM (2010) Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput Math Appl 59:3110–3116CrossRefMATHMathSciNet Malinowska AB, Torres DFM (2010) Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput Math Appl 59:3110–3116CrossRefMATHMathSciNet
9.
go back to reference Das S (2008) Functional fractional calculus for system identification and controls. Springer, BerlinMATH Das S (2008) Functional fractional calculus for system identification and controls. Springer, BerlinMATH
10.
go back to reference Ge ZM, Hsu MY (2007) Chaos in a generalized Van Der Pol system and in its fractional order system. Chaos Solitons Fractals 33:1711–1745ADSCrossRefMATH Ge ZM, Hsu MY (2007) Chaos in a generalized Van Der Pol system and in its fractional order system. Chaos Solitons Fractals 33:1711–1745ADSCrossRefMATH
11.
go back to reference Ge ZM, Zhang AR (2007) Anti control of chaos of the fractional order modified Van Der Pol systems. Appl Math Comput 187:1161–1172CrossRefMATHMathSciNet Ge ZM, Zhang AR (2007) Anti control of chaos of the fractional order modified Van Der Pol systems. Appl Math Comput 187:1161–1172CrossRefMATHMathSciNet
12.
go back to reference Ahmad W, Sprott JC (2003) Chaos in fractional order system autonomous nonlinear systems. Chaos Solitons Fractals 16:339–351ADSCrossRefMATH Ahmad W, Sprott JC (2003) Chaos in fractional order system autonomous nonlinear systems. Chaos Solitons Fractals 16:339–351ADSCrossRefMATH
13.
go back to reference Chen LQ, Zhao WJ, Zu JW (2004) Transient responses of an axially accelerating visco-elastic string constituted by a fractional differentiation law. J Sound Vib 278:861–871ADSCrossRefMATH Chen LQ, Zhao WJ, Zu JW (2004) Transient responses of an axially accelerating visco-elastic string constituted by a fractional differentiation law. J Sound Vib 278:861–871ADSCrossRefMATH
14.
go back to reference Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J 23(6): 918–925ADSCrossRefMATH Bagley RL, Torvik PJ (1985) Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J 23(6): 918–925ADSCrossRefMATH
15.
go back to reference Cooke JA, Keltie RF (1987) Determination of the impulse response of a viscoelastic beam using a fractional derivative constitutive model. ASME Des Eng Div Publ 5:137–141 Cooke JA, Keltie RF (1987) Determination of the impulse response of a viscoelastic beam using a fractional derivative constitutive model. ASME Des Eng Div Publ 5:137–141
16.
17.
go back to reference Rossikhin YA, Shitikova MV (2006) Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Process 86:2703–2711CrossRefMATH Rossikhin YA, Shitikova MV (2006) Analysis of damped vibrations of linear viscoelastic plates with damping modeled with fractional derivatives. Signal Process 86:2703–2711CrossRefMATH
18.
go back to reference Boyacı H, Pakdemirli M (1997) A comparison of different versions of the method of multiple scales for partial differential equations. J Sound Vib 204(4):595–607ADSCrossRefMATH Boyacı H, Pakdemirli M (1997) A comparison of different versions of the method of multiple scales for partial differential equations. J Sound Vib 204(4):595–607ADSCrossRefMATH
19.
go back to reference Pakdemirli M, Boyacı H (1995) Comparison of direct-perturbation methods with discretization-perturbation methods for nonlinear vibrations. J Sound Vib 186:837–845ADSCrossRefMATH Pakdemirli M, Boyacı H (1995) Comparison of direct-perturbation methods with discretization-perturbation methods for nonlinear vibrations. J Sound Vib 186:837–845ADSCrossRefMATH
20.
go back to reference Pakdemirli M, Boyacı H (1997) The direct-perturbation methods versus the discretization-perturbation method: linear systems. J Sound Vib 199(5):825–832ADSCrossRef Pakdemirli M, Boyacı H (1997) The direct-perturbation methods versus the discretization-perturbation method: linear systems. J Sound Vib 199(5):825–832ADSCrossRef
22.
go back to reference Demir DD, Bildik N, Sınır BG (2012) Application of fractional calculus in the dynamics of beams. Bound Value Probl 135:1–1363 Demir DD, Bildik N, Sınır BG (2012) Application of fractional calculus in the dynamics of beams. Bound Value Probl 135:1–1363
23.
go back to reference Rossikhin YA, Shitikova MV (1998) Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. ASCE J Eng Mech 124:1029–1036CrossRef Rossikhin YA, Shitikova MV (1998) Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. ASCE J Eng Mech 124:1029–1036CrossRef
24.
go back to reference Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. In: SM Nikol’ski (ed). Gordon and Breach, Yverdon Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives: theory and applications. In: SM Nikol’ski (ed). Gordon and Breach, Yverdon
25.
go back to reference Rossikhin YA, Shitikova MV, Shcheglova T (2009) Forced vibrations of a nonlinear oscillator with weak fractional damping. J Mech Mater Struct 4(9):1619–1636CrossRef Rossikhin YA, Shitikova MV, Shcheglova T (2009) Forced vibrations of a nonlinear oscillator with weak fractional damping. J Mech Mater Struct 4(9):1619–1636CrossRef
26.
go back to reference Rossikhin YA, Shitikova MV (1997) Application of fractional derivatives for the analysis of nonlinear damped vibrations of suspension bridges. In: Proceedings of the 1997 international symposium on nonlinear theory and its applications (NOLTA’97) (Honolulu, HI, 1997), vol 1. Research Society of NOLTA, IEICE, Tokyo, pp 541–544 Rossikhin YA, Shitikova MV (1997) Application of fractional derivatives for the analysis of nonlinear damped vibrations of suspension bridges. In: Proceedings of the 1997 international symposium on nonlinear theory and its applications (NOLTA’97) (Honolulu, HI, 1997), vol 1. Research Society of NOLTA, IEICE, Tokyo, pp 541–544
27.
go back to reference Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev (ASME) 50(1):15–67ADSCrossRefMathSciNet Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev (ASME) 50(1):15–67ADSCrossRefMathSciNet
28.
go back to reference Rossikhin YA, Shitikova MV (1998) Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. J Eng Mech (ASCE) 124(9):1029–1036CrossRef Rossikhin YA, Shitikova MV (1998) Application of fractional calculus for analysis of nonlinear damped vibrations of suspension bridges. J Eng Mech (ASCE) 124(9):1029–1036CrossRef
29.
go back to reference Rossikhin YA, Shitikova MV (2000) Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional derivative. J Eng Math 37(4):343–362CrossRefMATHMathSciNet Rossikhin YA, Shitikova MV (2000) Analysis of nonlinear vibrations of a two-degree-of-freedom mechanical system with damping modelled by a fractional derivative. J Eng Math 37(4):343–362CrossRefMATHMathSciNet
30.
go back to reference Rossikhin YA, Shitikova MV (2003) Free damped nonlinear vibrations of a viscoelastic plate under two-to-one internal resonance. Mater Sci Forum 440–441:29–36CrossRef Rossikhin YA, Shitikova MV (2003) Free damped nonlinear vibrations of a viscoelastic plate under two-to-one internal resonance. Mater Sci Forum 440–441:29–36CrossRef
31.
go back to reference Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New York Nayfeh AH (1981) Introduction to perturbation techniques. Wiley, New York
32.
go back to reference Sınır BG, Sınır S (2011) Analysis with the method of multiple scales of the axially forced fractional viscoelastic beam. Paper presented at the XVII National Mechanial Congress. University of Firat, Elazığ, pp 6–9 Sınır BG, Sınır S (2011) Analysis with the method of multiple scales of the axially forced fractional viscoelastic beam. Paper presented at the XVII National Mechanial Congress. University of Firat, Elazığ, pp 6–9
Metadata
Title
Linear dynamical analysis of fractionally damped beams and rods
Authors
D. Dönmez Demir
N. Bildik
B. G. Sınır
Publication date
01-04-2014
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2014
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-013-9642-9

Other articles of this Issue 1/2014

Journal of Engineering Mathematics 1/2014 Go to the issue

Premium Partners