Skip to main content
Top

2025 | OriginalPaper | Chapter

4. Linear Periodic Random Processes in Constructing Models Characterizing the Operation of Electrical Equipment

Authors : Vitalii Babak, Sergii Babak, Artur Zaporozhets

Published in: Statistical Diagnostics of Electric Power Equipment

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This comprehensive research explores the application of the linear periodic random processes (LPRP) and the linear random processes (LRP) models’ parameters in diagnosing and understanding the technical conditions and operational issues of diesel engine generators (DEG) and electric machines (EM). By integrating these models, the study aims to capture the cyclical and stochastic nature of the operational behaviors of EM and their components, particularly focusing on the vibrations and rotational dynamics of DEGs and EMs. Through the analysis of the uneven rotation of the crankshaft and the distribution of cylinder power, the research demonstrates how LPRP and LRP can be effectively used to diagnose potential malfunctions and optimize the performance of these systems. The methodology includes measuring the kinetic energy of the shaft, calculating acceleration deviations, and applying discrete Fourier transform to identify harmonics indicative of operational integrity or issues. The findings suggest that the absence or presence of specific harmonics can diagnose uneven cylinder power distribution, crucial for maintaining efficient and reliable operation. This chapter extends the application of LPRP and LRP in analyzing stochastically periodic behavior, offering significant insights for enhancing diagnostic techniques for DEGs and EMs, marking a pioneering step in applying periodic random processes to mechanical diagnostic fields.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stone, G.C.: Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 12(5), 891–904 (2005)CrossRef Stone, G.C.: Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Trans. Dielectr. Electr. Insul. 12(5), 891–904 (2005)CrossRef
2.
go back to reference Jadin, M.S., Taib, S.: Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography. Infrared Phys. Technol. 55(4), 236–245 (2012)CrossRef Jadin, M.S., Taib, S.: Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography. Infrared Phys. Technol. 55(4), 236–245 (2012)CrossRef
3.
go back to reference Chou, Y.C., Yao, L.: Automatic diagnostic system of electrical equipment using infrared thermography. In: 2009 International Conference of Soft Computing and Pattern Recognition, pp. 155–160. IEEE (2009, December) Chou, Y.C., Yao, L.: Automatic diagnostic system of electrical equipment using infrared thermography. In: 2009 International Conference of Soft Computing and Pattern Recognition, pp. 155–160. IEEE (2009, December)
4.
go back to reference Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef
5.
go back to reference Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Periodica polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Periodica polytechnica Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef
6.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for standardless measurements of the composite materials characteristics. In: Models and Measures in Measurements and Monitoring, pp. 157–190 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for standardless measurements of the composite materials characteristics. In: Models and Measures in Measurements and Monitoring, pp. 157–190 (2021)
7.
go back to reference Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)CrossRef Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)CrossRef
8.
go back to reference Wang, Z.Y., Lu, C., Zhou, B.: Fault diagnosis for rotary machinery with selective ensemble neural networks. Mech. Syst. Signal Process. 113, 112–130 (2018)CrossRef Wang, Z.Y., Lu, C., Zhou, B.: Fault diagnosis for rotary machinery with selective ensemble neural networks. Mech. Syst. Signal Process. 113, 112–130 (2018)CrossRef
9.
go back to reference Zhang, S., Asakura, T., Xu, X., Xu, B.: Fault diagnosis system for rotary machine based on fuzzy neural networks. JSME Int. J. Ser. C 46(3), 1035–1041 (2003)CrossRef Zhang, S., Asakura, T., Xu, X., Xu, B.: Fault diagnosis system for rotary machine based on fuzzy neural networks. JSME Int. J. Ser. C 46(3), 1035–1041 (2003)CrossRef
10.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for the diagnosis of electric power equipment. In: Models and Measures in Measurements and Monitoring, pp. 99–126 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for the diagnosis of electric power equipment. In: Models and Measures in Measurements and Monitoring, pp. 99–126 (2021)
11.
go back to reference Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023)
12.
go back to reference Yan, R., Gao, R.X.: Energy-based feature extraction for defect diagnosis in rotary machines. IEEE Trans. Instrum. Meas. 58(9), 3130–3139 (2009)CrossRef Yan, R., Gao, R.X.: Energy-based feature extraction for defect diagnosis in rotary machines. IEEE Trans. Instrum. Meas. 58(9), 3130–3139 (2009)CrossRef
13.
go back to reference Sohaib, M., Kim, J.M.: Fault diagnosis of rotary machine bearings under inconsistent working conditions. IEEE Trans. Instrum. Meas. 69(6), 3334–3347 (2019)CrossRef Sohaib, M., Kim, J.M.: Fault diagnosis of rotary machine bearings under inconsistent working conditions. IEEE Trans. Instrum. Meas. 69(6), 3334–3347 (2019)CrossRef
14.
go back to reference Capdessus, C., Sidahmed, M., Lacoume, J.L.: Cyclostationary processes: application in gear faults early diagnosis. Mech. Syst. Signal Process. 14(3), 371–385 (2000)CrossRef Capdessus, C., Sidahmed, M., Lacoume, J.L.: Cyclostationary processes: application in gear faults early diagnosis. Mech. Syst. Signal Process. 14(3), 371–385 (2000)CrossRef
15.
go back to reference Babak, V., Zaporozhets, A., Kulyk, M., Kuts, Y., Scherbak, L.: Application of discrete Hilbert transform to estimate the characteristics of cyclic signals: information provision. In: Systems, Decision and Control in Energy IV: Volume I. Modern Power Systems and Clean Energy, pp. 93–115. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kulyk, M., Kuts, Y., Scherbak, L.: Application of discrete Hilbert transform to estimate the characteristics of cyclic signals: information provision. In: Systems, Decision and Control in Energy IV: Volume I. Modern Power Systems and Clean Energy, pp. 93–115. Springer Nature Switzerland, Cham (2023)
16.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for measuring random angular quantities. In: Models and Measures in Measurements and Monitoring, pp. 61–97 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Models and measures for measuring random angular quantities. In: Models and Measures in Measurements and Monitoring, pp. 61–97 (2021)
17.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Examples of using models and measures on the circle. In: Models and Measures in Measurements and Monitoring, p. 127 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al.: Examples of using models and measures on the circle. In: Models and Measures in Measurements and Monitoring, p. 127 (2021)
18.
go back to reference Zvaritch, V., Myslovych, M., Gyzhko, Y.: Application of linear random processes to construction of diagnostic system for power engineering equipment. In: IFIP International Conference on Advances in Production Management Systems, pp. 617–622. Springer International Publishing, Cham (2021, August) Zvaritch, V., Myslovych, M., Gyzhko, Y.: Application of linear random processes to construction of diagnostic system for power engineering equipment. In: IFIP International Conference on Advances in Production Management Systems, pp. 617–622. Springer International Publishing, Cham (2021, August)
19.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems for Energy Equipments, pp. 23–70 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems for Energy Equipments, pp. 23–70 (2020)
20.
go back to reference Fryz, M., Mlynko, B.: Properties of stationarity and cyclostationarity of conditional linear random processes. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 166–170. IEEE (2020, February) Fryz, M., Mlynko, B.: Properties of stationarity and cyclostationarity of conditional linear random processes. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 166–170. IEEE (2020, February)
21.
go back to reference Fryz, M., Scherbak, L., Karpinski, M.P., Mlynko, B.: Characteristic function of conditional linear random process. In: ITTAP, pp. 129–135 (2021, November). Fryz, M., Scherbak, L., Karpinski, M.P., Mlynko, B.: Characteristic function of conditional linear random process. In: ITTAP, pp. 129–135 (2021, November).
22.
go back to reference Lupenko, S., Lutsyk, N., Lapusta, Y.: Cyclic linear random process as a mathematical model of cyclic signals. Acta mechanica et automatica 9(4), 219–224 (2015)CrossRef Lupenko, S., Lutsyk, N., Lapusta, Y.: Cyclic linear random process as a mathematical model of cyclic signals. Acta mechanica et automatica 9(4), 219–224 (2015)CrossRef
23.
go back to reference Fryz, M., Mlynko, B.: Property analysis of conditional linear random process as a mathematical model of cyclostationary signal. In: ITTAP, pp. 77–82 (2022) Fryz, M., Mlynko, B.: Property analysis of conditional linear random process as a mathematical model of cyclostationary signal. In: ITTAP, pp. 77–82 (2022)
24.
go back to reference Bittanti, S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems, pp. 141–182. Springer Berlin Heidelberg, Berlin, Heidelberg (2006) Bittanti, S.: Deterministic and stochastic linear periodic systems. In: Time Series and Linear Systems, pp. 141–182. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
25.
go back to reference Hurd, H.L., Miamee, A.: Periodically correlated random sequences: spectral theory and practice, vol. 355. Wiley (2007) Hurd, H.L., Miamee, A.: Periodically correlated random sequences: spectral theory and practice, vol. 355. Wiley (2007)
26.
go back to reference Florescu, I.: Probability and Stochastic Processes. Wiley (2014) Florescu, I.: Probability and Stochastic Processes. Wiley (2014)
27.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings (vol. 3309, pp. 349–362) (2022, December) Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings (vol. 3309, pp. 349–362) (2022, December)
28.
go back to reference Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021, December) Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021, December)
29.
go back to reference Lawler, G.F.: Introduction to Stochastic Processes. Chapman and Hall/CRC (2018) Lawler, G.F.: Introduction to Stochastic Processes. Chapman and Hall/CRC (2018)
30.
go back to reference Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation (2007) Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Courier Corporation (2007)
31.
go back to reference Pavliotis, G.A.: Stochastic processes and applications. In: Texts in Applied Mathematics, p. 60 (2014) Pavliotis, G.A.: Stochastic processes and applications. In: Texts in Applied Mathematics, p. 60 (2014)
32.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M., et al.: Simulation and software for diagnostic systems. In: Diagnostic Systems For Energy Equipments, pp. 71–90 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M., et al.: Simulation and software for diagnostic systems. In: Diagnostic Systems For Energy Equipments, pp. 71–90 (2020)
33.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M., et al.: Technical provision of diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 91–133 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M., et al.: Technical provision of diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 91–133 (2020)
34.
go back to reference Raj, V.P., Natarajan, K., Girikumar, S.T.: Induction motor fault detection and diagnosis by vibration analysis using MEMS accelerometer. In: 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), pp. 1–6. IEEE (2013, October) Raj, V.P., Natarajan, K., Girikumar, S.T.: Induction motor fault detection and diagnosis by vibration analysis using MEMS accelerometer. In: 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), pp. 1–6. IEEE (2013, October)
35.
go back to reference Varanis, M., Silva, A., Mereles, A., Pederiva, R.: MEMS accelerometers for mechanical vibrations analysis: a comprehensive review with applications. J. Braz. Soc. Mech. Sci. Eng. 40, 1–18 (2018)CrossRef Varanis, M., Silva, A., Mereles, A., Pederiva, R.: MEMS accelerometers for mechanical vibrations analysis: a comprehensive review with applications. J. Braz. Soc. Mech. Sci. Eng. 40, 1–18 (2018)CrossRef
36.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef
37.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.: Problems and features of measurements. In: Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al. (eds.) Models and Measures in Measurements and Monitoring, pp. 1–31 (2021) Babak, V.P., Babak, S.V., Eremenko, V.: Problems and features of measurements. In: Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O., et al. (eds.) Models and Measures in Measurements and Monitoring, pp. 1–31 (2021)
38.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. In: Models and Measures in Measurements and Monitoring, pp. 33–59 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. In: Models and Measures in Measurements and Monitoring, pp. 33–59 (2021)
39.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. In: Diagnostic Systems for Energy Equipments, pp. 1–22 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. In: Diagnostic Systems for Energy Equipments, pp. 1–22 (2020)
40.
go back to reference Zhang, L., Xiong, G., Liu, H., Zou, H., Guo, W.: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 37(8), 6077–6085 (2010)CrossRef Zhang, L., Xiong, G., Liu, H., Zou, H., Guo, W.: Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 37(8), 6077–6085 (2010)CrossRef
41.
go back to reference Wu, S.D., Wu, C.W., Lin, S.G., Wang, C.C., Lee, K.Y.: Time series analysis using composite multiscale entropy. Entropy 15(3), 1069–1084 (2013)MathSciNetCrossRef Wu, S.D., Wu, C.W., Lin, S.G., Wang, C.C., Lee, K.Y.: Time series analysis using composite multiscale entropy. Entropy 15(3), 1069–1084 (2013)MathSciNetCrossRef
42.
go back to reference Lei, Y., He, Z., Zi, Y.: Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 23(4), 1327–1338 (2009)CrossRef Lei, Y., He, Z., Zi, Y.: Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 23(4), 1327–1338 (2009)CrossRef
43.
go back to reference Hoang, D.T., Kang, H.J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 53, 42–50 (2019)CrossRef Hoang, D.T., Kang, H.J.: Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn. Syst. Res. 53, 42–50 (2019)CrossRef
44.
go back to reference Casado, A.J., Nieto, F.J., Blázquez, F., Platero, C.A.: A monitoring system for diesel engine driven generators based on electric power output oscillation assessment. IEEE Trans. Ind. Appl. 53(3), 3182–3188 (2016)CrossRef Casado, A.J., Nieto, F.J., Blázquez, F., Platero, C.A.: A monitoring system for diesel engine driven generators based on electric power output oscillation assessment. IEEE Trans. Ind. Appl. 53(3), 3182–3188 (2016)CrossRef
45.
go back to reference Zhiravetska, A., Gasparjan, A., Terebkov, A.: Monitoring of current technical condotion of vessel diesel-generator installation. In: 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (pp. P-1). IEEE (2017, September) Zhiravetska, A., Gasparjan, A., Terebkov, A.: Monitoring of current technical condotion of vessel diesel-generator installation. In: 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (pp. P-1). IEEE (2017, September)
46.
go back to reference Melnyk, O., Onyshchenko, S., Koskina, Y., Aleksandrovska, N., Drozhzhyn, O., Maluha, E., Bondaryuk, M., et al.: Full overlap ship security model: an integrative approach to shipboard equipment information security. In: E3S Web of Conferences, vol. 501, p. 02002. EDP Sciences (2024) Melnyk, O., Onyshchenko, S., Koskina, Y., Aleksandrovska, N., Drozhzhyn, O., Maluha, E., Bondaryuk, M., et al.: Full overlap ship security model: an integrative approach to shipboard equipment information security. In: E3S Web of Conferences, vol. 501, p. 02002. EDP Sciences (2024)
47.
go back to reference Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Ocheretna, V.: Comprehensive study and evaluation of ship energy efficiency and environmental safety management measures. In: Systems, Decision and Control in Energy V, pp. 665–679. Springer Nature Switzerland, Cham (2023) Melnyk, O., Onishchenko, O., Onyshchenko, S., Voloshyn, A., Ocheretna, V.: Comprehensive study and evaluation of ship energy efficiency and environmental safety management measures. In: Systems, Decision and Control in Energy V, pp. 665–679. Springer Nature Switzerland, Cham (2023)
48.
go back to reference Banks, J., Hines, J., Lebold, M., Campbell, R., Begg, C., Byington, C.: Failure modes and predictive diagnostics considerations for diesel engines. In: Proceedings of the 55th Meeting of the Society for Machinery Failure Prevention Technology, pp. 2–5 (2001, April) Banks, J., Hines, J., Lebold, M., Campbell, R., Begg, C., Byington, C.: Failure modes and predictive diagnostics considerations for diesel engines. In: Proceedings of the 55th Meeting of the Society for Machinery Failure Prevention Technology, pp. 2–5 (2001, April)
49.
go back to reference Pham, B.T., Lybeck, N.J., Agarwal, V.: Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators-Interim Report for FY 2013 (No. INL/EXT-12–27754). Idaho National Lab.(INL), Idaho Falls, ID (United States) (2012) Pham, B.T., Lybeck, N.J., Agarwal, V.: Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators-Interim Report for FY 2013 (No. INL/EXT-12–27754). Idaho National Lab.(INL), Idaho Falls, ID (United States) (2012)
50.
go back to reference LingAitis, L.P., Lebedevas, S., Liudvinavičius, L.: Evaluation of the operational reliability and forecasting of the operating life of the power train of the freight diesel locomotive fleet. Eksploatacja i Niezawodność 16(1), 73–79 (2014) LingAitis, L.P., Lebedevas, S., Liudvinavičius, L.: Evaluation of the operational reliability and forecasting of the operating life of the power train of the freight diesel locomotive fleet. Eksploatacja i Niezawodność 16(1), 73–79 (2014)
51.
go back to reference Hou, L., Zou, J., Du, C., Zhang, J.: A fault diagnosis model of marine diesel engine cylinder based on modified genetic algorithm and multilayer perceptron. Soft. Comput. 24, 7603–7613 (2020)CrossRef Hou, L., Zou, J., Du, C., Zhang, J.: A fault diagnosis model of marine diesel engine cylinder based on modified genetic algorithm and multilayer perceptron. Soft. Comput. 24, 7603–7613 (2020)CrossRef
52.
go back to reference Onishchenko, O., Bukaros, A., Melnyk, O., Yarovenko, V., Voloshyn, A., Lohinov, O.: Ship refrigeration system operating cycle efficiency assessment and identification of ways to reduce energy consumption of maritime Transport. In: Systems, Decision and Control in Energy V, pp. 641–652. Springer Nature Switzerland, Cham (2023) Onishchenko, O., Bukaros, A., Melnyk, O., Yarovenko, V., Voloshyn, A., Lohinov, O.: Ship refrigeration system operating cycle efficiency assessment and identification of ways to reduce energy consumption of maritime Transport. In: Systems, Decision and Control in Energy V, pp. 641–652. Springer Nature Switzerland, Cham (2023)
53.
go back to reference Artur, K., Stankevich, P., Aulin, D., Alexsandr, B.: Efficiency improvement of locomotive-type diesel engine operation due to introduction of resource-saving technologies for cleaning diesel and diesel locomotive systems. Procedia Comput. Sci. 149, 264–273 (2019)CrossRef Artur, K., Stankevich, P., Aulin, D., Alexsandr, B.: Efficiency improvement of locomotive-type diesel engine operation due to introduction of resource-saving technologies for cleaning diesel and diesel locomotive systems. Procedia Comput. Sci. 149, 264–273 (2019)CrossRef
54.
go back to reference Chang, M.Y., Chen, J.K., Chang, C.Y.: A simple spinning laminated composite shaft model. Int. J. Solids Struct. 41(3–4), 637–662 (2004)CrossRef Chang, M.Y., Chen, J.K., Chang, C.Y.: A simple spinning laminated composite shaft model. Int. J. Solids Struct. 41(3–4), 637–662 (2004)CrossRef
55.
go back to reference Gounaris, G.D., Papadopoulos, C.A.: Crack identification in rotating shafts by coupled response measurements. Eng. Fract. Mech. 69(3), 339–352 (2002)CrossRef Gounaris, G.D., Papadopoulos, C.A.: Crack identification in rotating shafts by coupled response measurements. Eng. Fract. Mech. 69(3), 339–352 (2002)CrossRef
56.
go back to reference Gao, P., Hou, L., Yang, R., Chen, Y.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019)MathSciNetCrossRef Gao, P., Hou, L., Yang, R., Chen, Y.: Local defect modelling and nonlinear dynamic analysis for the inter-shaft bearing in a dual-rotor system. Appl. Math. Model. 68, 29–47 (2019)MathSciNetCrossRef
57.
go back to reference Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, pp. 15–19 (2019, April) Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), Zaporizhzhia, Ukraine, pp. 15–19 (2019, April)
58.
go back to reference Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef
59.
go back to reference Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef
60.
go back to reference Wang, L.H., Zhao, X.P., Wu, J.X., Xie, Y.Y., Zhang, Y.H.: Motor fault diagnosis based on short-time Fourier transform and convolutional neural network. Chin. J. Mechan. Eng. 30, 1357–1368 (2017)CrossRef Wang, L.H., Zhao, X.P., Wu, J.X., Xie, Y.Y., Zhang, Y.H.: Motor fault diagnosis based on short-time Fourier transform and convolutional neural network. Chin. J. Mechan. Eng. 30, 1357–1368 (2017)CrossRef
61.
go back to reference Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019, June) Eremenko, V., Zaporozhets, A., Isaienko, V., Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019, June)
62.
go back to reference Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef
63.
go back to reference Argov, S., Ramesh, J., Salman, A., Sinelnikov, I., Goldstein, J., Guterman, H., Mordechai, S.: Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J. Biomed. Opt. 7(2), 248–254 (2002)CrossRef Argov, S., Ramesh, J., Salman, A., Sinelnikov, I., Goldstein, J., Guterman, H., Mordechai, S.: Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J. Biomed. Opt. 7(2), 248–254 (2002)CrossRef
64.
go back to reference Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 48–51. IEEE (2018, September) Zaporozhets, A.A., Eremenko, V.S., Serhiienko, R.V., Ivanov, S.A.: Development of an intelligent system for diagnosing the technical condition of the heat power equipment. In: 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT), vol. 1, pp. 48–51. IEEE (2018, September)
Metadata
Title
Linear Periodic Random Processes in Constructing Models Characterizing the Operation of Electrical Equipment
Authors
Vitalii Babak
Sergii Babak
Artur Zaporozhets
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-76253-6_4