Skip to main content
Top

2025 | OriginalPaper | Chapter

2. Linear Random Functions as Models of Diagnostic Signals

Authors : Vitalii Babak, Sergii Babak, Artur Zaporozhets

Published in: Statistical Diagnostics of Electric Power Equipment

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This comprehensive research delves into the mathematical modeling of diagnostic signals in electrical equipment diagnostics using linear random processes (LRPs) and their properties. Beginning with an exploration of stochastic processes with independent increments, the chapter establishes foundational concepts crucial for understanding LRPs. These processes, characterized by their reliance on past and present values, are further examined for their applicability in both continuous and discrete-time scenarios. Special attention is given to the properties of LRPs, including their closure under linear transformations and the simplification of probabilistic analysis through characteristic functions. The chapter extends the discussion to multidimensional random fields, showcasing the versatility of LRPs in modeling complex phenomena across various fields like radiophysics, radio engineering, and optics. Additionally, the exploration of stationarity and homogeneity within random fields elucidates the conditions under which these models can be simplified, further contributing to their practical utility in diagnostics. By providing a fundamental understanding of these processes and demonstrating their applicability through examples, this chapter aims to equip researchers and practitioners in the field of electrical equipment diagnostics with robust mathematical models for diagnostic signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Porat, B.: Digital Processing of Random Signals: Theory and Methods. Courier Dover Publications (2008) Porat, B.: Digital Processing of Random Signals: Theory and Methods. Courier Dover Publications (2008)
2.
go back to reference Gray, R.M.: Probability, Random Processes, and Ergodic Properties. Springer Science & Business Media (2009) Gray, R.M.: Probability, Random Processes, and Ergodic Properties. Springer Science & Business Media (2009)
3.
go back to reference Wong, E., Hajek, B.: Stochastic Processes in Engineering Systems. Springer Science & Business Media (2012) Wong, E., Hajek, B.: Stochastic Processes in Engineering Systems. Springer Science & Business Media (2012)
4.
go back to reference Yates, R.D., Goodman, D.J.: Probability and stochastic processes: a friendly introduction for electrical and computer engineers. John Wiley & Sons (2014) Yates, R.D., Goodman, D.J.: Probability and stochastic processes: a friendly introduction for electrical and computer engineers. John Wiley & Sons (2014)
5.
go back to reference Javorskyj, I., Kravets, I., Matsko, I., Yuzefovych, R.: Periodically correlated random processes: application in early diagnostics of mechanical systems. Mech. Syst. Signal Process. 83, 406–438 (2017)CrossRef Javorskyj, I., Kravets, I., Matsko, I., Yuzefovych, R.: Periodically correlated random processes: application in early diagnostics of mechanical systems. Mech. Syst. Signal Process. 83, 406–438 (2017)CrossRef
6.
go back to reference Javorskyj, I., Yuzefovych, R., Lychak, O., Trokhym, G., Varyvoda, M.: Methods of periodically non-stationary random processes for vibrations monitoring of rolling bearing with damaged outer race. Digital Signal Processing 145, 104343 (2024)CrossRef Javorskyj, I., Yuzefovych, R., Lychak, O., Trokhym, G., Varyvoda, M.: Methods of periodically non-stationary random processes for vibrations monitoring of rolling bearing with damaged outer race. Digital Signal Processing 145, 104343 (2024)CrossRef
7.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. Diagnost. Syst. Energy Equipments, 23–70 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. Diagnost. Syst. Energy Equipments, 23–70 (2020)
8.
go back to reference Li, Y., Mulani, S.B., Kapania, R.K., Fei, Q., Wu, S.: Non-stationary random vibration analysis of structures under multiple correlated normal random excitations. J. Sound Vib. 400, 481–507 (2017)CrossRef Li, Y., Mulani, S.B., Kapania, R.K., Fei, Q., Wu, S.: Non-stationary random vibration analysis of structures under multiple correlated normal random excitations. J. Sound Vib. 400, 481–507 (2017)CrossRef
9.
go back to reference Javorskyj, I., Yuzefovych, R., Lychak, O., Semenov, P., Slyepko, R.: Detection of distributed and localized faults in rotating machines using periodically non-stationary covariance analysis of vibrations. Meas. Sci. Technol. 34(6), 065102 (2023)CrossRef Javorskyj, I., Yuzefovych, R., Lychak, O., Semenov, P., Slyepko, R.: Detection of distributed and localized faults in rotating machines using periodically non-stationary covariance analysis of vibrations. Meas. Sci. Technol. 34(6), 065102 (2023)CrossRef
10.
go back to reference Myslovych, M., Hyzhko, Y., Hutorova, M., Ostapchuk, L.: On peculiarities of development of information support for technical diagnostics multilevel systems of electrical equipment. Comput. Probl. Electr. Eng. 9(2), 34–41 (2019)CrossRef Myslovych, M., Hyzhko, Y., Hutorova, M., Ostapchuk, L.: On peculiarities of development of information support for technical diagnostics multilevel systems of electrical equipment. Comput. Probl. Electr. Eng. 9(2), 34–41 (2019)CrossRef
11.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022) Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022)
12.
go back to reference Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021) Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021)
13.
go back to reference Zvarich, V.N., Marchenko, B.G.: Linear autoregressive processes with periodic structures as models of information signals. Radioelectron. Commun. Syst. 54(7), 367–372 (2011)CrossRef Zvarich, V.N., Marchenko, B.G.: Linear autoregressive processes with periodic structures as models of information signals. Radioelectron. Commun. Syst. 54(7), 367–372 (2011)CrossRef
14.
go back to reference Guzii, V.I., Marchenko, B.G., Protsenko, L.D.: Transformations providing for detection invariance with changes in the spectral parameters of low-frequency noise. Radioehlektronika 28, 3–10 (1985) Guzii, V.I., Marchenko, B.G., Protsenko, L.D.: Transformations providing for detection invariance with changes in the spectral parameters of low-frequency noise. Radioehlektronika 28, 3–10 (1985)
15.
go back to reference Xu, H., Yu, C., Wang, Y., Cheng, D.: Closure under infinitely divisible distribution roots and the Embrechts–Goldie conjecture. Lithuanian Math. J. 1–14 (2024) Xu, H., Yu, C., Wang, Y., Cheng, D.: Closure under infinitely divisible distribution roots and the Embrechts–Goldie conjecture. Lithuanian Math. J. 1–14 (2024)
16.
go back to reference Artikis, P.T., Artikis, C.T.: Facilitation of proactive decision making by using models incorporating stochastic integrals. Commun. Math. Appl. 14(1), 257 (2023)CrossRef Artikis, P.T., Artikis, C.T.: Facilitation of proactive decision making by using models incorporating stochastic integrals. Commun. Math. Appl. 14(1), 257 (2023)CrossRef
17.
go back to reference Çekyay, B., Frenk, J.B.G., Javadi, S.: On computing the multivariate poisson probability distribution. Methodol. Comput. Appl. Probab. 25(3), 70 (2023)MathSciNetCrossRef Çekyay, B., Frenk, J.B.G., Javadi, S.: On computing the multivariate poisson probability distribution. Methodol. Comput. Appl. Probab. 25(3), 70 (2023)MathSciNetCrossRef
18.
go back to reference Xu, H., Wang, Y., Cheng, D., Yu, C.: On the closure under infinitely divisible distribution roots. Lith. Math. J. 62(2), 259–287 (2022)MathSciNetCrossRef Xu, H., Wang, Y., Cheng, D., Yu, C.: On the closure under infinitely divisible distribution roots. Lith. Math. J. 62(2), 259–287 (2022)MathSciNetCrossRef
19.
go back to reference Mainardi, F., & Rogosin, S.: The origin of infinitely divisible distributions: from de Finetti's problem to Levy-Khintchine formula. arXiv preprint ArXiv:0801.1910 (2008) Mainardi, F., & Rogosin, S.: The origin of infinitely divisible distributions: from de Finetti's problem to Levy-Khintchine formula. arXiv preprint ArXiv:0801.1910 (2008)
20.
go back to reference Ken-Iti, S.: Lévy processes and infinitely divisible distributions, vol. 68). Cambridge university press (1999) Ken-Iti, S.: Lévy processes and infinitely divisible distributions, vol. 68). Cambridge university press (1999)
21.
go back to reference Watteel, R.N., Kulperger, R.J.: Nonparametric estimation of the canonical measure for infinitely divisible distributions. J. Stat. Comput. Simul. 73(7), 525–542 (2003)MathSciNetCrossRef Watteel, R.N., Kulperger, R.J.: Nonparametric estimation of the canonical measure for infinitely divisible distributions. J. Stat. Comput. Simul. 73(7), 525–542 (2003)MathSciNetCrossRef
22.
go back to reference Fristedt, B., Gray, L., Fristedt, B., Gray, L.: Infinitely divisible distributions as limits. A Modern App. Probabil. Theo. 289–322 (1997) Fristedt, B., Gray, L., Fristedt, B., Gray, L.: Infinitely divisible distributions as limits. A Modern App. Probabil. Theo. 289–322 (1997)
23.
24.
go back to reference Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Period. Polytech. Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef Zaporozhets, A., Eremenko, V., Babak, V., Isaienko, V., Babikova, K.: Using Hilbert transform in diagnostic of composite materials by impedance method. Period. Polytech. Electr. Eng. Comput. Sci. 64(4), 334–342 (2020)CrossRef
25.
go back to reference Babak, V., Zaporozhets, A., Kulyk, M., Kuts, Y., Scherbak, L.: Application of discrete Hilbert transform to estimate the characteristics of cyclic signals: information provision. In: Systems, Decision and Control in Energy IV: Volume I. Modern Power Systems and Clean Energy, pp 93–115. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kulyk, M., Kuts, Y., Scherbak, L.: Application of discrete Hilbert transform to estimate the characteristics of cyclic signals: information provision. In: Systems, Decision and Control in Energy IV: Volume I. Modern Power Systems and Clean Energy, pp 93–115. Springer Nature Switzerland, Cham (2023)
26.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L.: Some features of Hilbert transform and their use in energy informatics. Probl General Energy, 1–2 (2022) Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L.: Some features of Hilbert transform and their use in energy informatics. Probl General Energy, 1–2 (2022)
27.
go back to reference Matsiuk, A.V., Pryimak, M.V.: Mathematical model of electroretinogram in the form of linear stochastic process. In: 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 663–666. IEEE (2005) Matsiuk, A.V., Pryimak, M.V.: Mathematical model of electroretinogram in the form of linear stochastic process. In: 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, pp. 663–666. IEEE (2005)
28.
go back to reference Zvaritch, V., Glazkova, E.: Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals. In: 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 259–261. IEEE, (2015) Zvaritch, V., Glazkova, E.: Application of linear AR and ARMA processes for simulation of power equipment diagnostic systems information signals. In: 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), pp. 259–261. IEEE, (2015)
29.
go back to reference Rosiński, J., Szulga, J.: Product random measures and double stochastic integrals. In: Martingale Theory in Harmonic Analysis and Banach Spaces: Proceedings of the NSF-CBMS Conference Held at the Cleveland State University, Cleveland, Ohio, July 13–17, 1981, pp. 181–199. Springer Berlin Heidelberg, Berlin, Heidelberg (2006) Rosiński, J., Szulga, J.: Product random measures and double stochastic integrals. In: Martingale Theory in Harmonic Analysis and Banach Spaces: Proceedings of the NSF-CBMS Conference Held at the Cleveland State University, Cleveland, Ohio, July 13–17, 1981, pp. 181–199. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)
31.
go back to reference Gotovac, V., Helisová, K.: Testing equality in distribution of random convex compact sets via theory of N-distances and its application to assessing similarity of general random sets. (2018). ArXiv preprint arXiv:1801.02090. Gotovac, V., Helisová, K.: Testing equality in distribution of random convex compact sets via theory of N-distances and its application to assessing similarity of general random sets. (2018). ArXiv preprint arXiv:​1801.​02090.
32.
go back to reference Gilgen, H.: Fourier representation of a stationary stochastic process, pp. 441–498. Univariate Time Series in Geosciences, Theory and Examples (2006) Gilgen, H.: Fourier representation of a stationary stochastic process, pp. 441–498. Univariate Time Series in Geosciences, Theory and Examples (2006)
33.
go back to reference Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023)
34.
go back to reference Ma, Y., Ji, D.: Existence of solutions to a system of riemann-liouville fractional differential equations with coupled riemann-stieltjes integrals boundary conditions. Fractal Fract. 6(10), 543 (2022)CrossRef Ma, Y., Ji, D.: Existence of solutions to a system of riemann-liouville fractional differential equations with coupled riemann-stieltjes integrals boundary conditions. Fractal Fract. 6(10), 543 (2022)CrossRef
35.
go back to reference Zhao, D., Mao, J.: Positive solutions for a class of nonlinear singular fractional differential systems with riemann-stieltjes coupled integral boundary value conditions. Symmetry 13(1), 107 (2021)CrossRef Zhao, D., Mao, J.: Positive solutions for a class of nonlinear singular fractional differential systems with riemann-stieltjes coupled integral boundary value conditions. Symmetry 13(1), 107 (2021)CrossRef
36.
go back to reference Bonotto, E.M.: Generalized ordinary differential equations in abstract spaces and applications. In: Federson, M., Mesquita, J.G. (eds.). John Wiley & Sons, Incorporated (2021) Bonotto, E.M.: Generalized ordinary differential equations in abstract spaces and applications. In: Federson, M., Mesquita, J.G. (eds.). John Wiley & Sons, Incorporated (2021)
37.
go back to reference Zítek, P., Vyhlídal, T.: Steady state observer for fault detection of hereditary systems with weak dynamics. IFAC Proc. Vol. 33(11), 243–248 (2000)CrossRef Zítek, P., Vyhlídal, T.: Steady state observer for fault detection of hereditary systems with weak dynamics. IFAC Proc. Vol. 33(11), 243–248 (2000)CrossRef
38.
go back to reference Chaudhary, A.K., Sapkota, L.P., Kumar, V.: Truncated Cauchy power–exponential distribution: theory and Applications. IOSR J. Math. (IOSR-JM), 16(6), 44–52 (2020) Chaudhary, A.K., Sapkota, L.P., Kumar, V.: Truncated Cauchy power–exponential distribution: theory and Applications. IOSR J. Math. (IOSR-JM), 16(6), 44–52 (2020)
39.
go back to reference Yağın, F.H., Güldoğan, E., Colak, C.: A web-based software for the calculation of theoretical probability distributions. J. Cognit. Syst. 6(1), 44–50 (2021)CrossRef Yağın, F.H., Güldoğan, E., Colak, C.: A web-based software for the calculation of theoretical probability distributions. J. Cognit. Syst. 6(1), 44–50 (2021)CrossRef
40.
go back to reference Pham, H.: Basic statistics. In: Springer Handbook of Engineering Statistics, pp. 3–41. Springer, London, London (2023)CrossRef Pham, H.: Basic statistics. In: Springer Handbook of Engineering Statistics, pp. 3–41. Springer, London, London (2023)CrossRef
41.
go back to reference Reed, W.J.: The normal-Laplace distribution and its relatives. Adv. Distribut. theory, order statistics, and inference, 61–74 (2006) Reed, W.J.: The normal-Laplace distribution and its relatives. Adv. Distribut. theory, order statistics, and inference, 61–74 (2006)
42.
go back to reference Zubair, M., Tahir, M.H., Cordeiro, G.M., Alzaatreh, A., Ortega, E.M.: The power-Cauchy negative-binomial: properties and regression. J. Statist. Distribut. Appl. 5, 1–17 (2018)CrossRef Zubair, M., Tahir, M.H., Cordeiro, G.M., Alzaatreh, A., Ortega, E.M.: The power-Cauchy negative-binomial: properties and regression. J. Statist. Distribut. Appl. 5, 1–17 (2018)CrossRef
43.
go back to reference Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef Babak, V., Eremenko, V., Zaporozhets, A.: Research of diagnostic parameters of composite materials using Johnson distribution. Int. J. Comput. 18(4), 483–494 (2019)CrossRef
44.
go back to reference Cancho, V.G., Yiqi, B., Fiorucci, J.A., Barriga, G.D., Dey, D.K.: Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis. Commun. Stat.-Theory Meth. 47(11), 2741–2759 (2018)MathSciNetCrossRef Cancho, V.G., Yiqi, B., Fiorucci, J.A., Barriga, G.D., Dey, D.K.: Estimation and influence diagnostics for zero-inflated hyper-Poisson regression model: full Bayesian analysis. Commun. Stat.-Theory Meth. 47(11), 2741–2759 (2018)MathSciNetCrossRef
45.
go back to reference Ospina, R., Ferrari, S.L.: A general class of zero-or-one inflated beta regression models. Comput. Stat. Data Anal. 56(6), 1609–1623 (2012)MathSciNetCrossRef Ospina, R., Ferrari, S.L.: A general class of zero-or-one inflated beta regression models. Comput. Stat. Data Anal. 56(6), 1609–1623 (2012)MathSciNetCrossRef
46.
go back to reference Ling B, Khonsari M, Hathaway R (2009) Data-driven roller bearing diagnosis using degree of randomness and Laplace test. In: Annual Conference of the PHM Society, vol. 1, No. 1 Ling B, Khonsari M, Hathaway R (2009) Data-driven roller bearing diagnosis using degree of randomness and Laplace test. In: Annual Conference of the PHM Society, vol. 1, No. 1
47.
go back to reference Wang, X., Liu, C., Bi, F., Bi, X., Shao, K.: Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mech. Syst. Signal Process. 41(1–2), 581–597 (2013)CrossRef Wang, X., Liu, C., Bi, F., Bi, X., Shao, K.: Fault diagnosis of diesel engine based on adaptive wavelet packets and EEMD-fractal dimension. Mech. Syst. Signal Process. 41(1–2), 581–597 (2013)CrossRef
48.
go back to reference Sverdlova, A., & Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021) Sverdlova, A., & Zaporozhets, A.: Predicting anomaly conditions of energy equipment using neural networks. In: E3S Web of Conferences, vol. 280, p. 09005 (2021)
49.
go back to reference Eremenko, V., Zaporozhets, A., Isaienko, V., & Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019) Eremenko, V., Zaporozhets, A., Isaienko, V., & Babikova, K.: Application of wavelet transform for determining diagnostic signs. In: Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, vol. 1, pp. 12–15 (2019)
50.
go back to reference Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), pp. 15–19. Zaporizhzhia, Ukraine, (2019) Babak, S., Babak, V., Zaporozhets, A., Sverdlova, A.: Method of statistical spline functions for solving problems of data approximation and prediction of objects state. In: Proceedings of the Second International Workshop on Computer Modeling and Intelligent Systems (CMIS-2019), pp. 15–19. Zaporizhzhia, Ukraine, (2019)
51.
go back to reference Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef Eremenko, V., Babak, V., Zaporozhets, A.: Method of reference signals creating in non-destructive testing based on low-speed impact. Tekhnichna Elektrodynamika 4, 070 (2021)CrossRef
52.
go back to reference AR ZK, Péter HORV (2010) Modulation schemes for cognitive radio in white spaces. Radioeng. 19(4), 511 AR ZK, Péter HORV (2010) Modulation schemes for cognitive radio in white spaces. Radioeng. 19(4), 511
53.
go back to reference Wijenayake, C., Madanayake, A., Kota, J., Bruton, L.: Space-time spectral white spaces in cognitive radio: Theory, algorithms, and circuits. IEEE J. Emerg. Selected Top. Circ. Syst. 3(4), 640–653 (2013)CrossRef Wijenayake, C., Madanayake, A., Kota, J., Bruton, L.: Space-time spectral white spaces in cognitive radio: Theory, algorithms, and circuits. IEEE J. Emerg. Selected Top. Circ. Syst. 3(4), 640–653 (2013)CrossRef
54.
go back to reference Lanzisera, S., Zats, D., Pister, K.S.: Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sens. J. 11(3), 837–845 (2011)CrossRef Lanzisera, S., Zats, D., Pister, K.S.: Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sens. J. 11(3), 837–845 (2011)CrossRef
55.
go back to reference Di Nunno, G., Øksendal, B., Proske, F.: White noise analysis for Lévy processes. J. Funct. Anal. 206(1), 109–148 (2004)MathSciNetCrossRef Di Nunno, G., Øksendal, B., Proske, F.: White noise analysis for Lévy processes. J. Funct. Anal. 206(1), 109–148 (2004)MathSciNetCrossRef
56.
go back to reference Dybiec, B., Gudowska-Nowak, E., Hänggi, P.: Lévy-Brownian motion on finite intervals: Mean first passage time analysis. Phys. Rev. E 73(4), 046104 (2006)CrossRef Dybiec, B., Gudowska-Nowak, E., Hänggi, P.: Lévy-Brownian motion on finite intervals: Mean first passage time analysis. Phys. Rev. E 73(4), 046104 (2006)CrossRef
57.
go back to reference Fryz, M., Mlynko, B.: Property analysis of conditional linear random process as a mathematical model of cyclostationary signal. In ITTAP, pp. 77–82 (2022) Fryz, M., Mlynko, B.: Property analysis of conditional linear random process as a mathematical model of cyclostationary signal. In ITTAP, pp. 77–82 (2022)
58.
go back to reference Chojnowska-Michalik, A.: Periodic linear equations with general additive noise in Hilbert spaces. In Stochastic Systems and Optimization: proceedings of the 6th IFIP WG 7.1 Working Conference Warsaw, Poland, September 12–16, 1988, pp. 169–183. Berlin, Heidelberg: Springer Berlin Heidelberg (2005) Chojnowska-Michalik, A.: Periodic linear equations with general additive noise in Hilbert spaces. In Stochastic Systems and Optimization: proceedings of the 6th IFIP WG 7.1 Working Conference Warsaw, Poland, September 12–16, 1988, pp. 169–183. Berlin, Heidelberg: Springer Berlin Heidelberg (2005)
59.
go back to reference Suzuki, A.K., Cancho, V.G., Louzada, F.: The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics. Stat. Pap. 57(1), 133–159 (2016)MathSciNetCrossRef Suzuki, A.K., Cancho, V.G., Louzada, F.: The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics. Stat. Pap. 57(1), 133–159 (2016)MathSciNetCrossRef
60.
go back to reference Pan, Z., Balakrishnan, N.: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab. Eng. Syst. Saf. 96(8), 949–957 (2011)CrossRef Pan, Z., Balakrishnan, N.: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes. Reliab. Eng. Syst. Saf. 96(8), 949–957 (2011)CrossRef
61.
62.
go back to reference Ye, Z.S., Xie, M.: Stochastic modelling and analysis of degradation for highly reliable products. Appl. Stoch. Model. Bus. Ind. 31(1), 16–32 (2015)MathSciNetCrossRef Ye, Z.S., Xie, M.: Stochastic modelling and analysis of degradation for highly reliable products. Appl. Stoch. Model. Bus. Ind. 31(1), 16–32 (2015)MathSciNetCrossRef
63.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Systems For Energy Equipments, 71–90 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M., Babak, V.P., Zvaritch, V.M.: Simulation and software for diagnostic systems. Diagnostic Systems For Energy Equipments, 71–90 (2020)
64.
go back to reference Bousquet, N., Fouladirad, M., Grall, A., Paroissin, C.: Bayesian gamma processes for optimizing condition-based maintenance under uncertainty. Appl. Stoch. Model. Bus. Ind. 31(3), 360–379 (2015)MathSciNetCrossRef Bousquet, N., Fouladirad, M., Grall, A., Paroissin, C.: Bayesian gamma processes for optimizing condition-based maintenance under uncertainty. Appl. Stoch. Model. Bus. Ind. 31(3), 360–379 (2015)MathSciNetCrossRef
65.
go back to reference Keceli, S., Inui, K., Okamoto, H., Otsuru, N., Kakigi, R.: Auditory sustained field responses to periodic noise. BMC Neurosci. 13, 1–8 (2012)CrossRef Keceli, S., Inui, K., Okamoto, H., Otsuru, N., Kakigi, R.: Auditory sustained field responses to periodic noise. BMC Neurosci. 13, 1–8 (2012)CrossRef
66.
go back to reference Li, H., Peng, H., & Shu, N.: Study on suppressing White noises and periodic narrow bandwidth noise of PD by vertically invariant gray-level morphological filter. In: 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1–3. IEEE (2010) Li, H., Peng, H., & Shu, N.: Study on suppressing White noises and periodic narrow bandwidth noise of PD by vertically invariant gray-level morphological filter. In: 2010 International Conference on E-Product E-Service and E-Entertainment, pp. 1–3. IEEE (2010)
67.
go back to reference Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Techn. Electrodynam. 3, 69–78 (2022) Bohachev, I., Babak, V., Zaporozhets, A.: Novel small-aperture transducers based on magnetostrictive effect for diagnostic systems. Techn. Electrodynam. 3, 69–78 (2022)
68.
go back to reference Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II. Springer International Publishing, Cham pp. 141–151 (2021) Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11 s. In: Systems, Decision and Control in Energy II. Springer International Publishing, Cham pp. 141–151 (2021)
69.
go back to reference Guo, S.S.: Nonstationary solutions of nonlinear dynamical systems excited by Gaussian white noise. Nonlinear Dyn. 92, 613–626 (2018)CrossRef Guo, S.S.: Nonstationary solutions of nonlinear dynamical systems excited by Gaussian white noise. Nonlinear Dyn. 92, 613–626 (2018)CrossRef
70.
go back to reference Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef
71.
go back to reference Galleani, L., Cohen, L.: Nonstationary and stationary noise. In: Automatic Target Recognition XVI, vol. 6234, pp. 360–384. SPIE (2006) Galleani, L., Cohen, L.: Nonstationary and stationary noise. In: Automatic Target Recognition XVI, vol. 6234, pp. 360–384. SPIE (2006)
72.
go back to reference Fang, T., Zhang, T.S.: Non-stationary mean square response due to uniformly amplitude modulated random excitations. J. Sound Vib. 182(3), 369–379 (1995)CrossRef Fang, T., Zhang, T.S.: Non-stationary mean square response due to uniformly amplitude modulated random excitations. J. Sound Vib. 182(3), 369–379 (1995)CrossRef
73.
go back to reference Yu, G., Lin, T., Wang, Z., Li, Y.: Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery. IEEE Trans. Industr. Electron. 68(2), 1486–1496 (2020)CrossRef Yu, G., Lin, T., Wang, Z., Li, Y.: Time-reassigned multisynchrosqueezing transform for bearing fault diagnosis of rotating machinery. IEEE Trans. Industr. Electron. 68(2), 1486–1496 (2020)CrossRef
74.
go back to reference Antoni, J., Randall, R.B.: A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. J. Vib. Acoust. 125(3), 282–289 (2003)CrossRef Antoni, J., Randall, R.B.: A stochastic model for simulation and diagnostics of rolling element bearings with localized faults. J. Vib. Acoust. 125(3), 282–289 (2003)CrossRef
75.
go back to reference Dumonteil, E., Courau, T.: Dominance ratio assessment and Monte Carlo criticality simulations: dealing with high dominance ratio systems. Nucl. Technol. 172(2), 120–131 (2010)CrossRef Dumonteil, E., Courau, T.: Dominance ratio assessment and Monte Carlo criticality simulations: dealing with high dominance ratio systems. Nucl. Technol. 172(2), 120–131 (2010)CrossRef
76.
go back to reference Zvaritch, V., Myslovych, M., Gyzhko, Y.: Application of linear random processes to construction of diagnostic system for power engineering equipment. In: IFIP International Conference on Advances in Production Management Systems.Springer International Publishing, Cham, pp. 617–622 Zvaritch, V., Myslovych, M., Gyzhko, Y.: Application of linear random processes to construction of diagnostic system for power engineering equipment. In: IFIP International Conference on Advances in Production Management Systems.Springer International Publishing, Cham, pp. 617–622
77.
go back to reference Fryz, M., Mlynko, B.: Property analysis of multivariate conditional linear random processes in the problems of mathematical modelling of signals. Technol Audit Product Res 3(2/65), 29–32 (2022)CrossRef Fryz, M., Mlynko, B.: Property analysis of multivariate conditional linear random processes in the problems of mathematical modelling of signals. Technol Audit Product Res 3(2/65), 29–32 (2022)CrossRef
78.
go back to reference Fryz, M., Scherbak, L., Karpinski, M.P., Mlynko, B. (2021) Characteristic function of conditional linear random process. In ITTAP, pp. 129–135 Fryz, M., Scherbak, L., Karpinski, M.P., Mlynko, B. (2021) Characteristic function of conditional linear random process. In ITTAP, pp. 129–135
79.
go back to reference Fryz, M., Mlynko, B.: Properties of stationarity and cyclostationarity of conditional linear random processes. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET) (pp. 166–170). IEEE (2020) Fryz, M., Mlynko, B.: Properties of stationarity and cyclostationarity of conditional linear random processes. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET) (pp. 166–170). IEEE (2020)
80.
go back to reference Pierre, P.A.: Central limit theorems for conditionally linear random processes. SIAM J. Appl. Math. 20(3), 449–461 (1971)MathSciNetCrossRef Pierre, P.A.: Central limit theorems for conditionally linear random processes. SIAM J. Appl. Math. 20(3), 449–461 (1971)MathSciNetCrossRef
81.
go back to reference Pierre, P.: Characteristics of Gaussian random processes by representations in terms of independent random variables. IEEE Trans. Inf. Theory 15(6), 648–658 (1969)MathSciNetCrossRef Pierre, P.: Characteristics of Gaussian random processes by representations in terms of independent random variables. IEEE Trans. Inf. Theory 15(6), 648–658 (1969)MathSciNetCrossRef
82.
go back to reference Mann, H.B., Wald, A.: On the statistical treatment of linear stochastic difference equations. Econometrica, J. Economet. Soc. 173–220 (1943) Mann, H.B., Wald, A.: On the statistical treatment of linear stochastic difference equations. Econometrica, J. Economet. Soc. 173–220 (1943)
83.
go back to reference Grenander, U., Rosenblatt, M.: Statistical spectral analysis of time series arising from stationary stochastic processes. Ann Math Stat. 537–558 (1953) Grenander, U., Rosenblatt, M.: Statistical spectral analysis of time series arising from stationary stochastic processes. Ann Math Stat. 537–558 (1953)
84.
go back to reference Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (1991) Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (1991)
85.
go back to reference Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.). Lévy Processes: Theory and Applications. Springer Science & Business Media (2001) Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.). Lévy Processes: Theory and Applications. Springer Science & Business Media (2001)
86.
go back to reference Jimenez, J.J.M., Schwartz, S., Vingerhoeds, R., Grabot, B., Salaün, M.: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics. J. Manuf. Syst. 56, 539–557 (2020)CrossRef Jimenez, J.J.M., Schwartz, S., Vingerhoeds, R., Grabot, B., Salaün, M.: Towards multi-model approaches to predictive maintenance: a systematic literature survey on diagnostics and prognostics. J. Manuf. Syst. 56, 539–557 (2020)CrossRef
87.
go back to reference Wang, P., Gao, R.X., Woyczynski, W.A.: Lévy process-based stochastic modeling for machine performance degradation prognosis. IEEE Trans. Industr. Electron. 68(12), 12760–12770 (2020)CrossRef Wang, P., Gao, R.X., Woyczynski, W.A.: Lévy process-based stochastic modeling for machine performance degradation prognosis. IEEE Trans. Industr. Electron. 68(12), 12760–12770 (2020)CrossRef
88.
go back to reference Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef
89.
go back to reference Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019) Zaporozhets, A., Eremenko, V., Isaenko, V., Babikova, K.: Approach for creating reference signals for detecting defects in diagnosing of composite materials. In: Conference on Computer Science and Information Technologies, pp. 154–172. Springer International Publishing, Cham (2019)
90.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef
91.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O. (2021) Models of measuring signals and fields. Models and Meas Measurements Monit. 33–59 Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O. (2021) Models of measuring signals and fields. Models and Meas Measurements Monit. 33–59
92.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. Models Measures Measurem Monit. pp. 99–126 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. Models Measures Measurem Monit. pp. 99–126 (2021)
93.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Measur Measurem Monitor. pp. 1–31 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. Models Measur Measurem Monitor. pp. 1–31 (2021)
94.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.:. Models and measures for atmospheric pollution monitoring. Models Measures Measurements Monitor. 227–266 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.:. Models and measures for atmospheric pollution monitoring. Models Measures Measurements Monitor. 227–266 (2021)
95.
go back to reference Korban, D., Melnyk, O., Onishchenko, O., Kurdiuk, S., Shevchenko, V., Obniavko, T.: Radar-based detection and recognition methodology of autonomous surface vehicles in challenging marine environment. Sci. J. Silesian Univ. Technol. Series Transport/Zeszyty Naukowe Politechniki Slaskiej. Seria Transport, 122 (2024) Korban, D., Melnyk, O., Onishchenko, O., Kurdiuk, S., Shevchenko, V., Obniavko, T.: Radar-based detection and recognition methodology of autonomous surface vehicles in challenging marine environment. Sci. J. Silesian Univ. Technol. Series Transport/Zeszyty Naukowe Politechniki Slaskiej. Seria Transport, 122 (2024)
Metadata
Title
Linear Random Functions as Models of Diagnostic Signals
Authors
Vitalii Babak
Sergii Babak
Artur Zaporozhets
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-76253-6_2