Der zentrale Inhalt des Kapitels 7 ist die Herausforderung, die das Konzept der linearen Unabhängigkeit von Vektoren für Sie bereithält. Sie erfahren dieses Konzept am kleinsten erklärenden Beispiel von drei Stiften, die Sie als ebenen Fächer oder als echt dreidimensionales Dreibein in der Hand halten können. Diese Anschauung wird Ihnen die formale Definition der linearen Unabhängigkeit zugänglich machen. Wir festigen das Verständnis durch geometrische Beispiele und Anwendungen. Vorher zeigen wir Ihnen, dass Vektoren als Vektoren behandelt werden wollen und in welche Fallstricke Sie durch Übergeneralisierungen geraten. Sie lernen die Begriffe der Basis und der Dimension eines Vektorraums kennen, und das Kapitel schließt mit dem Euklidischen Skalarprodukt, der Gleichung für einen Kreis und der Beschreibung des Betrags eines Vektors als Abstand vom Nullpunkt. Mithilfe von Vektoren beweisen wir den Satz von Pythagoras sehr direkt.