Skip to main content
Top
Published in: Journal of Scientific Computing 1/2019

22-03-2019

Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction

Authors: Dongfang Li, Chengda Wu, Zhimin Zhang

Published in: Journal of Scientific Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A Newton linearized Galerkin finite element method is proposed to solve nonlinear time fractional parabolic problems with non-smooth solutions in time direction. Iterative processes or corrected schemes become dispensable by the use of the Newton linearized method and graded meshes in the temporal direction. The optimal error estimate in the \(L^2\)-norm is obtained without any time step restrictions dependent on the spatial mesh size. Such unconditional convergence results are proved by including the initial time singularity into concern, while previous unconditional convergent results always require continuity and boundedness of the temporal derivative of the exact solution. Numerical experiments are conducted to confirm the theoretical results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agarwal, P.R., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)CrossRefMATH Agarwal, P.R., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)CrossRefMATH
2.
go back to reference Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef
3.
go back to reference Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefMATH Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)MathSciNetCrossRefMATH
4.
go back to reference Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetCrossRefMATH
5.
go back to reference Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH
6.
go back to reference Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit–explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38, A3070–A3093 (2016)MathSciNetCrossRefMATH
7.
go back to reference Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetCrossRefMATH Chen, X., Di, Y., Duan, J., Li, D.: Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 84, 160–167 (2018)MathSciNetCrossRefMATH
8.
go back to reference Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174. AMS, USA (1998) Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems, Translations of Mathematical Monographs 174. AMS, USA (1998)
9.
go back to reference Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)MathSciNetCrossRefMATH Chen, F., Xu, Q., Hesthaven, J.S.: A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)MathSciNetCrossRefMATH
10.
go back to reference Hou, D., Hasan, M.T., Xu, X.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18, 43–62 (2018)MathSciNetCrossRefMATH Hou, D., Hasan, M.T., Xu, X.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18, 43–62 (2018)MathSciNetCrossRefMATH
11.
go back to reference Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM. J. Sci. Comput. 39, A3129–A3152 (2017)MathSciNetCrossRefMATH
12.
13.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
14.
go back to reference Le, K.N., Mclean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH Le, K.N., Mclean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker–Planck equation with general forcing. SIAM. J. Numer. Anal. 54, 1763–1784 (2016)MathSciNetCrossRefMATH
15.
go back to reference Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank–Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)MathSciNetCrossRefMATH
16.
go back to reference Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2013)MathSciNetMATH
17.
go back to reference Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)MathSciNetCrossRefMATH
18.
go back to reference Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time fractional nonlinear parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)MathSciNet
19.
go back to reference Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)MathSciNetCrossRefMATH Li, D., Wang, J.: Unconditionally optimal error analysis of Crank–Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)MathSciNetCrossRefMATH
20.
go back to reference Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH Li, D., Wang, J., Zhang, J.: Unconditionally convergent \(L1\)-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM. J. Sci. Comput. 39, A3067–A3088 (2017)CrossRefMATH
21.
go back to reference Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction–subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)MathSciNetCrossRefMATH
22.
go back to reference Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia J. Appl. Math. 7, 439–454 (2017)MathSciNetCrossRefMATH Li, H., Wu, X., Zhang, J.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asia J. Appl. Math. 7, 439–454 (2017)MathSciNetCrossRefMATH
23.
go back to reference Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)MathSciNetCrossRefMATH
24.
go back to reference Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)MATH Logg, A., Mardal, K., Wells, G. (eds.): Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)MATH
26.
27.
go back to reference Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analysis. Math. Comput. 87, 2259–2272 (2018)CrossRefMATH Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analysis. Math. Comput. 87, 2259–2272 (2018)CrossRefMATH
28.
go back to reference Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA. J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH Mustapha, K., Mustapha, H.: A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel. IMA. J. Numer. Anal. 30, 555–578 (2010)MathSciNetCrossRefMATH
29.
go back to reference Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)MathSciNetCrossRefMATH
30.
go back to reference Shen, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion. Numer. Math. Theor. Methods Appl. 11, 854–876 (2018)MathSciNetCrossRef Shen, C., Shen, J.: A space-time Petrov–Galerkin spectral method for time fractional diffusion. Numer. Math. Theor. Methods Appl. 11, 854–876 (2018)MathSciNetCrossRef
31.
go back to reference Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)MathSciNetCrossRefMATH Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)MathSciNetCrossRefMATH
32.
go back to reference Stynes, M., Gracia, J.L.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)MathSciNetCrossRefMATH Stynes, M., Gracia, J.L.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)MathSciNetCrossRefMATH
33.
go back to reference Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)MathSciNetCrossRefMATH
34.
go back to reference Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)CrossRefMATH
35.
go back to reference Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–Landau equations under temporal gauge. SIAM. J. Numer. Anal. 56, 1291–1312 (2018)MathSciNetCrossRefMATH Wu, C., Sun, W.: Analysis of Galerkin FEMs for mixed formulation of time-dependent Ginzburg–Landau equations under temporal gauge. SIAM. J. Numer. Anal. 56, 1291–1312 (2018)MathSciNetCrossRefMATH
36.
go back to reference Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)MathSciNetCrossRefMATH
37.
go back to reference Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM. J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM. J. Numer. Anal. 56, 210–227 (2018)MathSciNetCrossRefMATH
38.
go back to reference Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction–subdiffusion process. Phys. Rev. E. 69, 036126 (2004)CrossRef
39.
go back to reference Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for time fractional diffusion equations on no-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH Zhang, Y., Sun, Z., Liao, H.: Finite difference methods for time fractional diffusion equations on no-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)MathSciNetCrossRefMATH
40.
go back to reference Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)MathSciNetCrossRefMATH Zhou, X., Xu, C.: Well-posedness of a kind of nonlinear coupled system of fractional differential equations. Sci. China Math. 59, 1209–1220 (2016)MathSciNetCrossRefMATH
Metadata
Title
Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction
Authors
Dongfang Li
Chengda Wu
Zhimin Zhang
Publication date
22-03-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00943-0

Other articles of this Issue 1/2019

Journal of Scientific Computing 1/2019 Go to the issue

Premium Partner