Skip to main content
Top
Published in:

01-12-2023 | Original Article

Link prediction using betweenness centrality and graph neural networks

Authors: Jibouni Ayoub, Dounia Lotfi, Ahmed Hammouch

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Social networks are widely considered as the most important tool to connect people. The last century saw a massive increase in the number of links between users. Many nodes and/or edges are included or removed repeatedly as time passes. In order to understand the patterns of relations among people or organizations, social network analysis (SNA) sheds light on users and links dynamics. Link prediction (LP) is one of the most important research areas of SNA. The main objective of link prediction is to determine whether two nodes will form a link or not in the future. LP uses similarity-based methods such as common neighbors, resource allocation, and Adamic–Adar metrics to forecast potential connections from the current state of networks. Although using the similarity-based methods is highly time efficient, the measures still suffer from low accuracy. The main focus of this paper is to address this drawback by defining a new metric called LSBC that uses the combination of a similarity metric and the betweenness centrality which defines the node’s power over the entire network. The method was illustrated with nine datasets from different types of networks. Experiments show that LSBC captures the similarity of a pair of nodes accurately and surpasses all the state-of-the-arts methods. Furthermore, we use neural network model to address the link prediction as a classification task. The results show that the adding LSBC as additional feature increases the accuracy and reduces the cross-entropy loss.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adamic LA, Adar E (2003) Friends and neighbors on the web. Social Netw 25(3):211–230CrossRef Adamic LA, Adar E (2003) Friends and neighbors on the web. Social Netw 25(3):211–230CrossRef
go back to reference Aghabozorgi F, Khayyambashi MR (2018) A new similarity measure for link prediction based on local structures in social networks. Phys A Stat Mech Appl 501:12–23CrossRef Aghabozorgi F, Khayyambashi MR (2018) A new similarity measure for link prediction based on local structures in social networks. Phys A Stat Mech Appl 501:12–23CrossRef
go back to reference Ahmad I, Akhtar MU, Noor S, Shahnaz A (2020) Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci Rep 10(1):1–9 Ahmad I, Akhtar MU, Noor S, Shahnaz A (2020) Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci Rep 10(1):1–9
go back to reference Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: SDM06: workshop on link analysis, counter-terrorism and security, vol. 30, pp 798–805 Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In: SDM06: workshop on link analysis, counter-terrorism and security, vol. 30, pp 798–805
go back to reference Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. In: Social network data analytics, pp 243–275. Springer, Boston, MA Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. In: Social network data analytics, pp 243–275. Springer, Boston, MA
go back to reference Ayoub J, Lotfi D, Hammouch A (2022) Mean received resources meet machine learning algorithms to improve link prediction methods. Information 13(1):35CrossRef Ayoub J, Lotfi D, Hammouch A (2022) Mean received resources meet machine learning algorithms to improve link prediction methods. Information 13(1):35CrossRef
go back to reference Aziz F, Gul H, Muhammad I, Uddin I (2020) Link prediction using node information on local paths. Phys A Stat Mech Appl 557:124980CrossRef Aziz F, Gul H, Muhammad I, Uddin I (2020) Link prediction using node information on local paths. Phys A Stat Mech Appl 557:124980CrossRef
go back to reference Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp. 635–644 Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp. 635–644
go back to reference Barabâsi AL, Jeong H, N’eda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. PhysicaA: Stat Mech Appl 311(3–4):590–614MathSciNetCrossRef Barabâsi AL, Jeong H, N’eda Z, Ravasz E, Schubert A, Vicsek T (2002) Evolution of the social network of scientific collaborations. PhysicaA: Stat Mech Appl 311(3–4):590–614MathSciNetCrossRef
go back to reference Bhardwaj S, Niyogi R, Milani A (2011, June) Performance analysis of an algorithm for computation of betweenness centrality. In: International conference on computational science and its applications, pp 537–546. Springer, Berlin, Heidelberg Bhardwaj S, Niyogi R, Milani A (2011, June) Performance analysis of an algorithm for computation of betweenness centrality. In: International conference on computational science and its applications, pp 537–546. Springer, Berlin, Heidelberg
go back to reference Cannistraci CV, Alanis-Lobato G, Ravasi T (2013) From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Sci Rep 3(1):1–14CrossRef Cannistraci CV, Alanis-Lobato G, Ravasi T (2013) From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks. Sci Rep 3(1):1–14CrossRef
go back to reference Chen H, Li X, Huang Z (2005, June) Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS joint conference on digital libraries (JCDL’05), pp 141–142. IEEE Chen H, Li X, Huang Z (2005, June) Link prediction approach to collaborative filtering. In: Proceedings of the 5th ACM/IEEE-CS joint conference on digital libraries (JCDL’05), pp 141–142. IEEE
go back to reference Fouss F, Pirotte A, Renders J, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef Fouss F, Pirotte A, Renders J, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef
go back to reference Gu S, Chen L (2016, November) Link prediction based on precision optimization. In: International conference on geo-informatics in resource management and sustainable ecosystem, pp. 131–141, Springer, Singapore Gu S, Chen L (2016, November) Link prediction based on precision optimization. In: International conference on geo-informatics in resource management and sustainable ecosystem, pp. 131–141, Springer, Singapore
go back to reference Hanneke S, Xing EP (2009) Network completion and survey sampling. In: Artificial intelligence and statistics, pp 209–215. PMLR Hanneke S, Xing EP (2009) Network completion and survey sampling. In: Artificial intelligence and statistics, pp 209–215. PMLR
go back to reference Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579 Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579
go back to reference Jeh G, Widom J (2002, July) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 538–543 Jeh G, Widom J (2002, July) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp 538–543
go back to reference Karim A, Azam S, Shanmugam B, Kannoorpatti K, Alazab M (2019) A comprehensive survey for intelligent spam email detection. IEEE Access 7:168261–168295CrossRef Karim A, Azam S, Shanmugam B, Kannoorpatti K, Alazab M (2019) A comprehensive survey for intelligent spam email detection. IEEE Access 7:168261–168295CrossRef
go back to reference Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43CrossRef
go back to reference Kumar A, Singh SS, Singh K, Biswas B (2020) Link prediction techniques, applications, and performance: a survey. Phys A Stat Mech Appl 553:124289MathSciNetCrossRef Kumar A, Singh SS, Singh K, Biswas B (2020) Link prediction techniques, applications, and performance: a survey. Phys A Stat Mech Appl 553:124289MathSciNetCrossRef
go back to reference Lee YL, Zhou T (2021) Collaborative filtering approach to link prediction. Phys A Stat Mech Appl 578:126107CrossRef Lee YL, Zhou T (2021) Collaborative filtering approach to link prediction. Phys A Stat Mech Appl 578:126107CrossRef
go back to reference Leicht EA, Holme P, Newman ME (2006) Vertex similarity in networks. Phys. Rev. E 73(2):026120CrossRef Leicht EA, Holme P, Newman ME (2006) Vertex similarity in networks. Phys. Rev. E 73(2):026120CrossRef
go back to reference Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems, pp 539–547 Leskovec J, Mcauley JJ (2012) Learning to discover social circles in ego networks. In: Advances in neural information processing systems, pp 539–547
go back to reference Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Tech 58(7):1019–1031CrossRef Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci Tech 58(7):1019–1031CrossRef
go back to reference Liu W, Lü L (2010) Link prediction based on local random walk. EPL (Europhysics Letters) 89(5):58007CrossRef Liu W, Lü L (2010) Link prediction based on local random walk. EPL (Europhysics Letters) 89(5):58007CrossRef
go back to reference Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge Murphy KP (2012) Machine learning: a probabilistic perspective. MIT Press, Cambridge
go back to reference Negyessy L, Nepusz T, Kocsis L, Bazso F (2006) Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis. Eur J Neurosci 23(7):1919–1930CrossRef Negyessy L, Nepusz T, Kocsis L, Bazso F (2006) Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis. Eur J Neurosci 23(7):1919–1930CrossRef
go back to reference Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102CrossRef Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102CrossRef
go back to reference Niepert M, Ahmed M, Kutzkov K (2016, June) Learning convolutional neural networks for graphs. In: International conference on machine learning, pp 2014–2023. PMLR Niepert M, Ahmed M, Kutzkov K (2016, June) Learning convolutional neural networks for graphs. In: International conference on machine learning, pp 2014–2023. PMLR
go back to reference Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555CrossRef Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–1555CrossRef
go back to reference Salton G, McGill MJ (1986) Introduction to modern information retrieval Salton G, McGill MJ (1986) Introduction to modern information retrieval
go back to reference Sorensen TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5:1–34 Sorensen TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5:1–34
go back to reference Wu M, Wu S, Zhang Q, Xue C, Kan H, Shao F (2019) Enhancing link prediction via network reconstruction. Phys A Stat Mech Appl 534:122346CrossRef Wu M, Wu S, Zhang Q, Xue C, Kan H, Shao F (2019) Enhancing link prediction via network reconstruction. Phys A Stat Mech Appl 534:122346CrossRef
go back to reference Zhou T, Lu L, Zhang YC (2009) Predicting missing links via local information. European Phys J B 71(4):623–630CrossRef Zhou T, Lu L, Zhang YC (2009) Predicting missing links via local information. European Phys J B 71(4):623–630CrossRef
go back to reference Zhou T, Lee YL, Wang G (2021) Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Phys A Stat Mech Appl 564:125532CrossRef Zhou T, Lee YL, Wang G (2021) Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Phys A Stat Mech Appl 564:125532CrossRef
Metadata
Title
Link prediction using betweenness centrality and graph neural networks
Authors
Jibouni Ayoub
Dounia Lotfi
Ahmed Hammouch
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-022-00999-1

Premium Partner