Skip to main content
Top

2013 | OriginalPaper | Chapter

6. Lipids: Soft, Dynamic Containers

Author : Jonas Hannestad

Published in: Fluorescence in Bio-inspired Nanotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An important criterion in all definitions of life is the requirement for enclosure. There must be a boundary that separates the living systems from its surroundings, that prevents dissociation of genetic information and that enables an autopoietic metabolic system to be upheld. On the fundamental level of the single cell, enclosure is created by a doubled-layered membrane which encapsulates the cellular components, effectively isolating them from the cell exterior. The cell membrane is a highly dynamic system relying of self-assembly and self-organization. From a nanotechnological point of view these properties, which can be traced down to the properties of the individual building blocks, are highly interesting. In paper IV and V, bio-inspired membrane systems are utilized to facilitate reactions between molecules confined to a surface.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
See discussion on mixing time and container size in Sect. 6.2.
 
2
Here, the word object refers to any material entity or process that is able to interact with the system.
 
3
SNARE is an acronym derived from “Soluble NSF Attachment Protein (SNAP) receptor”.
 
Literature
1.
go back to reference Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfaces and polymers in aqueous solution, 2nd edn. Wiley, Chichester, p 545 Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfaces and polymers in aqueous solution, 2nd edn. Wiley, Chichester, p 545
2.
go back to reference Czolkos I, Erkan Y, Dommersnes P, Jesorka A, Orwar O (2007) Controlled formation and mixing of two-dimensional fluids. Nano Lett 7:1980–1984CrossRef Czolkos I, Erkan Y, Dommersnes P, Jesorka A, Orwar O (2007) Controlled formation and mixing of two-dimensional fluids. Nano Lett 7:1980–1984CrossRef
3.
go back to reference Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653CrossRef Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653CrossRef
4.
go back to reference Evans E, Needham D (1987) Physical-properties of surfactant bilayer-membranes—thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228CrossRef Evans E, Needham D (1987) Physical-properties of surfactant bilayer-membranes—thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J Phys Chem 91:4219–4228CrossRef
5.
go back to reference Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56CrossRef Evans E, Yeung A (1994) Hidden dynamics in rapid changes of bilayer shape. Chem Phys Lipids 73:39–56CrossRef
6.
go back to reference Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48CrossRef Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48CrossRef
7.
go back to reference Nissen J, Gritsch S, Wiegand G, Radler JO (1999) Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B 10:335–344CrossRef Nissen J, Gritsch S, Wiegand G, Radler JO (1999) Wetting of phospholipid membranes on hydrophilic surfaces—concepts towards self-healing membranes. Eur Phys J B 10:335–344CrossRef
8.
go back to reference Czolkos I, Hannestad JK, Jesorka A, Kumar R, Brown T, Albinsson B, Orwar O (2009) Platform for controlled supramolecular nanoassembly. Nano Lett 9:2482–2486CrossRef Czolkos I, Hannestad JK, Jesorka A, Kumar R, Brown T, Albinsson B, Orwar O (2009) Platform for controlled supramolecular nanoassembly. Nano Lett 9:2482–2486CrossRef
9.
go back to reference Czolkos I, Guan J, Orwar O, Jesorka A (2011) Flow control of thermotropic lipid monolayers. Soft Matter 7:6926–6933CrossRef Czolkos I, Guan J, Orwar O, Jesorka A (2011) Flow control of thermotropic lipid monolayers. Soft Matter 7:6926–6933CrossRef
10.
go back to reference Czolkos I, Hakonen B, Orwar O, Jesorka A (2012) High-resolution micropatterned teflon AF substrates for biocompatible nanofluidic devices. Langmuir 28:3200–3205CrossRef Czolkos I, Hakonen B, Orwar O, Jesorka A (2012) High-resolution micropatterned teflon AF substrates for biocompatible nanofluidic devices. Langmuir 28:3200–3205CrossRef
11.
go back to reference Berg OG, Vonhippel PH (1985) Diffusion-controlled macromolecular interactions. Ann Rev Biophys Biophys Chem 14:131–160CrossRef Berg OG, Vonhippel PH (1985) Diffusion-controlled macromolecular interactions. Ann Rev Biophys Biophys Chem 14:131–160CrossRef
12.
go back to reference Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRef Jacobson K, Mouritsen OG, Anderson RGW (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRef
13.
go back to reference Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRef Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRef
14.
go back to reference Yoon TY, Jeong C, Lee SW, Kim JH, Choi MC, Kim SJ, Kim MW, Lee SD (2006) Topographic control of lipid-raft reconstitution in model membranes. Nat Mater 5:281–285CrossRef Yoon TY, Jeong C, Lee SW, Kim JH, Choi MC, Kim SJ, Kim MW, Lee SD (2006) Topographic control of lipid-raft reconstitution in model membranes. Nat Mater 5:281–285CrossRef
15.
go back to reference Ursell TS, Klug WS, Phillips R (2009) Morphology and interaction between lipid domains. Proc Natl Acad Sci USA 106:13301–13306CrossRef Ursell TS, Klug WS, Phillips R (2009) Morphology and interaction between lipid domains. Proc Natl Acad Sci USA 106:13301–13306CrossRef
16.
go back to reference Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901CrossRef Berry H (2002) Monte Carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation. Biophys J 83:1891–1901CrossRef
17.
go back to reference de Gennes PG (1982) Kinetics of diffusion-controlled processes in dense polymer systems. 1. non-entangled regimes. J Chem Phys 76:3316–3321CrossRef de Gennes PG (1982) Kinetics of diffusion-controlled processes in dense polymer systems. 1. non-entangled regimes. J Chem Phys 76:3316–3321CrossRef
18.
go back to reference Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44CrossRef Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44CrossRef
19.
20.
go back to reference Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888CrossRef Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888CrossRef
21.
go back to reference Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325CrossRef Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361:315–325CrossRef
22.
go back to reference Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776CrossRef Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776CrossRef
23.
go back to reference Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117CrossRef Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117CrossRef
24.
go back to reference Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234CrossRef Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234CrossRef
25.
go back to reference Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:a002212CrossRef Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:a002212CrossRef
26.
go back to reference Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390CrossRef Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390CrossRef
27.
go back to reference Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL (1994) Oparins reactions revisited—enzymatic-synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7547CrossRef Walde P, Goto A, Monnard PA, Wessicken M, Luisi PL (1994) Oparins reactions revisited—enzymatic-synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7547CrossRef
28.
go back to reference Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998CrossRef Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998CrossRef
29.
go back to reference Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) Autopoietic self-reproduction of fatty-acid vesicles. J Am Chem Soc 116:11649–11654CrossRef Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) Autopoietic self-reproduction of fatty-acid vesicles. J Am Chem Soc 116:11649–11654CrossRef
30.
go back to reference Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713CrossRef Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713CrossRef
31.
go back to reference Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476CrossRef Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476CrossRef
32.
go back to reference Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275CrossRef Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275CrossRef
33.
go back to reference Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240CrossRef Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238–240CrossRef
34.
go back to reference Ertem G, Ferris JP (1997) Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J Am Chem Soc 119:7197–7201CrossRef Ertem G, Ferris JP (1997) Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J Am Chem Soc 119:7197–7201CrossRef
35.
go back to reference Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622CrossRef Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622CrossRef
36.
go back to reference De Landa M (1997) A thousand years of nonlinear history. Zone Books, Brooklyn De Landa M (1997) A thousand years of nonlinear history. Zone Books, Brooklyn
37.
go back to reference Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRef Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220CrossRef
38.
go back to reference He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544CrossRef He MY, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544CrossRef
39.
go back to reference Edgar JS, Milne G, Zhao Y, Pabbati CP, Lim DSW, Chiu DT (2009) Compartmentalization of chemically separated components into droplets. Angew Chem Int Ed 48:2719–2722CrossRef Edgar JS, Milne G, Zhao Y, Pabbati CP, Lim DSW, Chiu DT (2009) Compartmentalization of chemically separated components into droplets. Angew Chem Int Ed 48:2719–2722CrossRef
40.
go back to reference Chan YHM, Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11:581–587CrossRef Chan YHM, Boxer SG (2007) Model membrane systems and their applications. Curr Opin Chem Biol 11:581–587CrossRef
41.
go back to reference Chiu DT, Wilson CF, Ryttsen F, Stromberg A, Farre C, Karlsson A, Nordholm S, Gaggar A, Modi BP, Moscho A, Garza-Lopez RA, Orwar O, Zare RN (1999) Chemical transformations in individual ultrasmall biomimetic containers. Science 283:1892–1895CrossRef Chiu DT, Wilson CF, Ryttsen F, Stromberg A, Farre C, Karlsson A, Nordholm S, Gaggar A, Modi BP, Moscho A, Garza-Lopez RA, Orwar O, Zare RN (1999) Chemical transformations in individual ultrasmall biomimetic containers. Science 283:1892–1895CrossRef
42.
go back to reference Karlsson A, Karlsson R, Karlsson M, Cans AS, Stromberg A, Ryttsen F, Orwar O (2001) Molecular engineering—networks of nanotubes and containers. Nature 409:150–152CrossRef Karlsson A, Karlsson R, Karlsson M, Cans AS, Stromberg A, Ryttsen F, Orwar O (2001) Molecular engineering—networks of nanotubes and containers. Nature 409:150–152CrossRef
43.
go back to reference Karlsson M, Sott K, Davidson M, Cans AS, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc Natl Acad Sci USA 99:11573–11578CrossRef Karlsson M, Sott K, Davidson M, Cans AS, Linderholm P, Chiu D, Orwar O (2002) Formation of geometrically complex lipid nanotube-vesicle networks of higher-order topologies. Proc Natl Acad Sci USA 99:11573–11578CrossRef
44.
go back to reference Karlsson M, Davidson M, Karlsson R, Karlsson A, Bergenholtz J, Konkoli Z, Jesorka A, Lobovkina T, Hurtig J, Voinova M, Orwar O (2004) Biomimetic nanoscale reactors and networks. Annu Rev Phys Chem 55:613–649CrossRef Karlsson M, Davidson M, Karlsson R, Karlsson A, Bergenholtz J, Konkoli Z, Jesorka A, Lobovkina T, Hurtig J, Voinova M, Orwar O (2004) Biomimetic nanoscale reactors and networks. Annu Rev Phys Chem 55:613–649CrossRef
45.
go back to reference Sott K, Lobovkina T, Lizana L, Tokarz M, Bauer B, Konkoli Z, Orwar O (2006) Controlling enzymatic reactions by geometry in a biomimetic nanoscale network. Nano Lett 6:209–214CrossRef Sott K, Lobovkina T, Lizana L, Tokarz M, Bauer B, Konkoli Z, Orwar O (2006) Controlling enzymatic reactions by geometry in a biomimetic nanoscale network. Nano Lett 6:209–214CrossRef
46.
go back to reference Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Natl Acad Sci USA 105:4099–4104CrossRef Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Natl Acad Sci USA 105:4099–4104CrossRef
47.
go back to reference Tokarz M, Akerman B, Olofsson J, Joanny JF, Dommersnes P, Orwar O (2005) Single-file electrophoretic transport and counting of individual dna molecules in surfactant nanotubes. Proc Natl Acad Sci USA 102:9127–9132CrossRef Tokarz M, Akerman B, Olofsson J, Joanny JF, Dommersnes P, Orwar O (2005) Single-file electrophoretic transport and counting of individual dna molecules in surfactant nanotubes. Proc Natl Acad Sci USA 102:9127–9132CrossRef
48.
go back to reference Granéli A, Edvardsson M, Höök F (2004) DNA-based formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. ChemPhysChem 5:729–733CrossRef Granéli A, Edvardsson M, Höök F (2004) DNA-based formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. ChemPhysChem 5:729–733CrossRef
49.
go back to reference Stengel G, Zahn R, Höök F (2007) DNA-induced programmable fusion of phospholipid vesicles. J Am Chem Soc 129:9584CrossRef Stengel G, Zahn R, Höök F (2007) DNA-induced programmable fusion of phospholipid vesicles. J Am Chem Soc 129:9584CrossRef
50.
go back to reference Simonsson L, Jönsson P, Stengel G, Höök F (2010) Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers. ChemPhysChem 11:1011–1017CrossRef Simonsson L, Jönsson P, Stengel G, Höök F (2010) Site-specific DNA-controlled fusion of single lipid vesicles to supported lipid bilayers. ChemPhysChem 11:1011–1017CrossRef
51.
go back to reference Gunnarsson A, Sjövall P, Höök F (2010) Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry. Nano Lett 10:732–737CrossRef Gunnarsson A, Sjövall P, Höök F (2010) Liposome-based chemical barcodes for single molecule DNA detection using imaging mass spectrometry. Nano Lett 10:732–737CrossRef
52.
go back to reference Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697CrossRef Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697CrossRef
53.
go back to reference Chan YHM, Lenz P, Boxer SG (2007) Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc Natl Acad Sci USA 104:18913–18918CrossRef Chan YHM, Lenz P, Boxer SG (2007) Kinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers. Proc Natl Acad Sci USA 104:18913–18918CrossRef
54.
go back to reference Rawle RJ, van Lengerich B, Chung M, Bendix PM, Boxer SG (2011) Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys J 101:L37–L39CrossRef Rawle RJ, van Lengerich B, Chung M, Bendix PM, Boxer SG (2011) Vesicle fusion observed by content transfer across a tethered lipid bilayer. Biophys J 101:L37–L39CrossRef
55.
56.
go back to reference Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35:149–157CrossRef Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35:149–157CrossRef
57.
go back to reference Erkan Y, Czolkos I, Jesorka A, Wilhelmsson LM, Orwar O (2007) Direct immobilization of cholesteryl-TEG-modified oligonucleotides onto hydrophobic SU-8 surfaces. Langmuir 23:5259–5263CrossRef Erkan Y, Czolkos I, Jesorka A, Wilhelmsson LM, Orwar O (2007) Direct immobilization of cholesteryl-TEG-modified oligonucleotides onto hydrophobic SU-8 surfaces. Langmuir 23:5259–5263CrossRef
58.
go back to reference Erkan Y, Halma K, Czolkos I, Jesorka A, Dommersnes P, Kumar R, Brown T, Orwar O (2008) Controlled release of Chol-TEG-DNA from nano- and micropatterned SU-8 surfaces by a spreading lipid film. Nano Lett 8:227–231CrossRef Erkan Y, Halma K, Czolkos I, Jesorka A, Dommersnes P, Kumar R, Brown T, Orwar O (2008) Controlled release of Chol-TEG-DNA from nano- and micropatterned SU-8 surfaces by a spreading lipid film. Nano Lett 8:227–231CrossRef
Metadata
Title
Lipids: Soft, Dynamic Containers
Author
Jonas Hannestad
Copyright Year
2013
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-01068-7_6

Premium Partners