Skip to main content
Top

2013 | OriginalPaper | Chapter

4. Liposomes for DNA Nanotechnology: Preparation, Properties, and Applications

Authors : Neeshma Dave, Juewen Liu

Published in: DNA Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the past two decades, DNA has become a major player in nanotechnology. A very interesting and useful method uses DNA to link various nanoparticles, where the programmable structure and molecular recognition function of DNA are coupled to the optical, electric, magnetic, and catalytic property of the nanomaterials. Compared to many inorganic nanoparticles, liposomes are self-assembled soft matters that possess surface fluidity and the potential for molecular containment. The charge, size, and phase transition properties of liposomes can be precisely tuned by varying liposome formulation. In this chapter, we describe methods for liposome preparation and DNA attachment. We also discuss the biophysical properties of DNA-functionalized liposomes and their emerging applications in DNA-directed assembly, biosensor development, and drug delivery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772CrossRef Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772CrossRef
3.
go back to reference Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRef Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRef
4.
go back to reference Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRef Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRef
5.
go back to reference Katz E, Willner I (2004) Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRef Katz E, Willner I (2004) Nanobiotechnology: integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108CrossRef
6.
go back to reference Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998CrossRef Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998CrossRef
7.
go back to reference Wang H, Yang RH, Yang L, Tan WH (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460CrossRef Wang H, Yang RH, Yang L, Tan WH (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460CrossRef
8.
go back to reference Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641CrossRef Li D, Song SP, Fan CH (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641CrossRef
9.
go back to reference de Lima MCP, Simoes S, Pires P, Faneca H, Duzgunes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294CrossRef de Lima MCP, Simoes S, Pires P, Faneca H, Duzgunes N (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294CrossRef
10.
go back to reference Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47CrossRef Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47CrossRef
11.
go back to reference Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRef Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across lamellae of swollen phospholipids. J Mol Biol 13:238–252CrossRef
12.
go back to reference Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832CrossRef Jesorka A, Orwar O (2008) Liposomes: technologies and analytical applications. Annu Rev Anal Chem 1:801–832CrossRef
13.
go back to reference Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6:11–16CrossRef Shimomura M, Sawadaishi T (2001) Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr Opin Colloid Interface Sci 6:11–16CrossRef
14.
go back to reference Oldfield E, Chapman D (1972) Dynamics of lipids in membranes – heterogeneity and role of cholesterol. FEBS Lett 23:285–297CrossRef Oldfield E, Chapman D (1972) Dynamics of lipids in membranes – heterogeneity and role of cholesterol. FEBS Lett 23:285–297CrossRef
15.
go back to reference Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97CrossRef Ohvo-Rekila H, Ramstedt B, Leppimaki P, Slotte JP (2002) Cholesterol interactions with phospholipids in membranes. Prog Lipid Res 41:66–97CrossRef
16.
go back to reference Martin R, Yeagle P (1978) Models for lipid organization in cholesterol-phospholipid bilayers including cholesterol dimer formation. Lipids 13:594–597CrossRef Martin R, Yeagle P (1978) Models for lipid organization in cholesterol-phospholipid bilayers including cholesterol dimer formation. Lipids 13:594–597CrossRef
17.
go back to reference Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRef Szoka F, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu Rev Biophys Bioeng 9:467–508CrossRef
18.
go back to reference Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083CrossRef Veatch SL, Keller SL (2003) Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys J 85:3074–3083CrossRef
19.
go back to reference Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid-vesicles. Chem Phys Lipids 40:89–107CrossRef Hope MJ, Bally MB, Mayer LD, Janoff AS, Cullis PR (1986) Generation of multilamellar and unilamellar phospholipid-vesicles. Chem Phys Lipids 40:89–107CrossRef
20.
go back to reference Huang CH (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8:344–352CrossRef Huang CH (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 8:344–352CrossRef
21.
go back to reference Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75:4194–4198CrossRef Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75:4194–4198CrossRef
22.
go back to reference Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external ac electric-fields – kinetics and applications. Prog Colloid Polym Sci 89:127–131CrossRef Angelova MI, Soleau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external ac electric-fields – kinetics and applications. Prog Colloid Polym Sci 89:127–131CrossRef
23.
go back to reference Morales-Penningston NF, Wu J, Farkas ER, Goh SL, Konyakhina TM, Zheng JY, Webb WW, Feigenson GW (2010) Guv preparation and imaging: minimizing artifacts. Biochim Biophys Acta-Biomembr 1798:1324–1332CrossRef Morales-Penningston NF, Wu J, Farkas ER, Goh SL, Konyakhina TM, Zheng JY, Webb WW, Feigenson GW (2010) Guv preparation and imaging: minimizing artifacts. Biochim Biophys Acta-Biomembr 1798:1324–1332CrossRef
24.
go back to reference Svedhem S, Pfeiffer I, Larsson C, Wingren C, Borrebaeck C, Höök F (2003) Patterns of DNA-labeled and scfv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem 4:339–343CrossRef Svedhem S, Pfeiffer I, Larsson C, Wingren C, Borrebaeck C, Höök F (2003) Patterns of DNA-labeled and scfv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem 4:339–343CrossRef
25.
go back to reference Kessel A, Ben-Tal N, May S (2001) Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys J 81:643–658CrossRef Kessel A, Ben-Tal N, May S (2001) Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations. Biophys J 81:643–658CrossRef
26.
go back to reference Beales PA, Vanderlick TK (2007) Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J Phys Chem A 111:12372–12380CrossRef Beales PA, Vanderlick TK (2007) Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J Phys Chem A 111:12372–12380CrossRef
27.
go back to reference Pfeiffer I, Hook F (2004) Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc 126:10224–10225CrossRef Pfeiffer I, Hook F (2004) Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc 126:10224–10225CrossRef
28.
go back to reference Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794CrossRef Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794CrossRef
29.
go back to reference Banchelli M, Betti F, Berti D, Caminati G, Bombelli FB, Brown T, Wilhelmsson LM, Norden B, Baglioni P (2008) Phospholipid membranes decorated by cholesterol-based oligonucleotides as soft hybrid nanostructures. J Phys Chem B 112:10942–10952CrossRef Banchelli M, Betti F, Berti D, Caminati G, Bombelli FB, Brown T, Wilhelmsson LM, Norden B, Baglioni P (2008) Phospholipid membranes decorated by cholesterol-based oligonucleotides as soft hybrid nanostructures. J Phys Chem B 112:10942–10952CrossRef
30.
go back to reference Beales PA, Vanderlick TK (2009) Partitioning of membrane-anchored DNA between coexisting lipid phases. J Phys Chem B 113:13678–13686CrossRef Beales PA, Vanderlick TK (2009) Partitioning of membrane-anchored DNA between coexisting lipid phases. J Phys Chem B 113:13678–13686CrossRef
31.
go back to reference Bunge A, Loew M, Pescador P, Arbuzova A, Brodersen N, Kang J, DaÌhne L, Liebscher J, Herrmann A, Stengel G, Huster D (2009) Lipid membranes carrying lipophilic cholesterol-based oligonucleotides – characterization and application on layer-by-layer coated particles. J Phys Chem B 113:16425–16434CrossRef Bunge A, Loew M, Pescador P, Arbuzova A, Brodersen N, Kang J, DaÌhne L, Liebscher J, Herrmann A, Stengel G, Huster D (2009) Lipid membranes carrying lipophilic cholesterol-based oligonucleotides – characterization and application on layer-by-layer coated particles. J Phys Chem B 113:16425–16434CrossRef
32.
go back to reference Chan YHM, van Lengerich B, Boxer SG (2008) Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3:FA17–FA21CrossRef Chan YHM, van Lengerich B, Boxer SG (2008) Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3:FA17–FA21CrossRef
33.
go back to reference Chan YHM, van Lengerich B, Boxer SG (2009) Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc Natl Acad Sci USA 106:979–984CrossRef Chan YHM, van Lengerich B, Boxer SG (2009) Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. Proc Natl Acad Sci USA 106:979–984CrossRef
34.
go back to reference Jakobsen U, Simonsen AC, Vogel S (2008) DNA-controlled assembly of soft nanoparticles. J Am Chem Soc 130:10462–10463CrossRef Jakobsen U, Simonsen AC, Vogel S (2008) DNA-controlled assembly of soft nanoparticles. J Am Chem Soc 130:10462–10463CrossRef
35.
go back to reference Patolsky F, Lichtenstein A, Willner I (1999) Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc 122:418–419CrossRef Patolsky F, Lichtenstein A, Willner I (1999) Amplified microgravimetric quartz-crystal-microbalance assay of DNA using oligonucleotide-functionalized liposomes or biotinylated liposomes. J Am Chem Soc 122:418–419CrossRef
36.
go back to reference Dave N, Liu J (2011) Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5:1304–1312CrossRef Dave N, Liu J (2011) Programmable assembly of DNA-functionalized liposomes by DNA. ACS Nano 5:1304–1312CrossRef
37.
go back to reference Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697CrossRef Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697CrossRef
38.
go back to reference Hurst SJ, Hill HD, Mirkin CA (2008) “Three-dimensional hybridization” with polyvalent DNA-gold nanoparticle conjugates. J Am Chem Soc 130:12192–12200CrossRef Hurst SJ, Hill HD, Mirkin CA (2008) “Three-dimensional hybridization” with polyvalent DNA-gold nanoparticle conjugates. J Am Chem Soc 130:12192–12200CrossRef
39.
go back to reference Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRef Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609CrossRef
40.
go back to reference Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654CrossRef Jin R, Wu G, Li Z, Mirkin CA, Schatz GC (2003) What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 125:1643–1654CrossRef
41.
go back to reference Yoshina-Ishii C, Miller GP, Kraft ML, Kool ET, Boxer SG (2005) General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc 127:1356–1357CrossRef Yoshina-Ishii C, Miller GP, Kraft ML, Kool ET, Boxer SG (2005) General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc 127:1356–1357CrossRef
42.
go back to reference Chiruvolu S, Walker S, Israelachvili J, Schmitt F-J, Leckband D, Zasadzinski JA (1994) Higher order self-assembly of vesicles by site-specific binding. Science 264:1753–1756CrossRef Chiruvolu S, Walker S, Israelachvili J, Schmitt F-J, Leckband D, Zasadzinski JA (1994) Higher order self-assembly of vesicles by site-specific binding. Science 264:1753–1756CrossRef
43.
go back to reference Mart RJ, Liem KP, Wang X, Webb SJ (2006) The effect of receptor clustering on vesicle-vesicle adhesion. J Am Chem Soc 128:14462–14463CrossRef Mart RJ, Liem KP, Wang X, Webb SJ (2006) The effect of receptor clustering on vesicle-vesicle adhesion. J Am Chem Soc 128:14462–14463CrossRef
44.
go back to reference Paleos CM, Tsiourvas D (2003) Molecular recognition and hydrogen-bonded amphiphiles. Top Curr Chem 227:1–29CrossRef Paleos CM, Tsiourvas D (2003) Molecular recognition and hydrogen-bonded amphiphiles. Top Curr Chem 227:1–29CrossRef
45.
go back to reference Menger FM, Zhang H (2006) Self-adhesion among phospholipid vesicles. J Am Chem Soc 128:1414–1415CrossRef Menger FM, Zhang H (2006) Self-adhesion among phospholipid vesicles. J Am Chem Soc 128:1414–1415CrossRef
46.
go back to reference Wang C, Wang S, Huang J, Li Z, Gao Q, Zhu B (2003) Transition between higher-level self-assemblies of ligand-lipid vesicles induced by Cu2+ ion. Langmuir 19:7676–7678CrossRef Wang C, Wang S, Huang J, Li Z, Gao Q, Zhu B (2003) Transition between higher-level self-assemblies of ligand-lipid vesicles induced by Cu2+ ion. Langmuir 19:7676–7678CrossRef
47.
go back to reference Hadorn M, Eggenberger Hotz P (2010) DNA-mediated self-assembly of artificial vesicles. PLoS One 5:e9886CrossRef Hadorn M, Eggenberger Hotz P (2010) DNA-mediated self-assembly of artificial vesicles. PLoS One 5:e9886CrossRef
48.
go back to reference Dave N, Liu J (2011) Protection and promotion of UV radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. Adv Mater 23:3182–3186CrossRef Dave N, Liu J (2011) Protection and promotion of UV radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. Adv Mater 23:3182–3186CrossRef
49.
go back to reference Troutman TS, Barton JK, Romanowski M (2008) Biodegradable plasmon resonant nanoshells. Adv Mater 20:2604–2608CrossRef Troutman TS, Barton JK, Romanowski M (2008) Biodegradable plasmon resonant nanoshells. Adv Mater 20:2604–2608CrossRef
50.
go back to reference Troutman TS, Leung SJ, Romanowski M (2009) Light-induced content release from plasmon-resonant liposomes. Adv Mater 21:2334–2338CrossRef Troutman TS, Leung SJ, Romanowski M (2009) Light-induced content release from plasmon-resonant liposomes. Adv Mater 21:2334–2338CrossRef
51.
go back to reference Jin YD, Gao XH (2009) Spectrally tunable leakage-free gold nanocontainers. J Am Chem Soc 131:17774–17776CrossRef Jin YD, Gao XH (2009) Spectrally tunable leakage-free gold nanocontainers. J Am Chem Soc 131:17774–17776CrossRef
52.
go back to reference Paasonen L, Sipila T, Subrizi A, Laurinmaki P, Butcher SJ, Rappolt M, Yaghmur A, Urtti A, Yliperttula M (2010) Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release 147:136–143CrossRef Paasonen L, Sipila T, Subrizi A, Laurinmaki P, Butcher SJ, Rappolt M, Yaghmur A, Urtti A, Yliperttula M (2010) Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release. J Control Release 147:136–143CrossRef
53.
go back to reference Pobbati AV, Stein A, Fasshauer D (2006) N- to c-terminal snare complex assembly promotes rapid membrane fusion. Science 313:673–676CrossRef Pobbati AV, Stein A, Fasshauer D (2006) N- to c-terminal snare complex assembly promotes rapid membrane fusion. Science 313:673–676CrossRef
54.
go back to reference Stengel G, Zahn R, Hook F (2007) DNA-induced programmable fusion of phospholipid vesicles. J Am Chem Soc 129:9584–9585CrossRef Stengel G, Zahn R, Hook F (2007) DNA-induced programmable fusion of phospholipid vesicles. J Am Chem Soc 129:9584–9585CrossRef
55.
go back to reference Stengel G, Simonsson L, Campbell RA, Hook F (2008) Determinants for membrane fusion induced by cholesterol-modified DNA zippers. J Phys Chem B 112:8264–8274CrossRef Stengel G, Simonsson L, Campbell RA, Hook F (2008) Determinants for membrane fusion induced by cholesterol-modified DNA zippers. J Phys Chem B 112:8264–8274CrossRef
56.
go back to reference Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem 386:1335–1343CrossRef Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged dye-encapsulating liposomes for lateral-flow assays based on sandwich hybridization. Anal Bioanal Chem 386:1335–1343CrossRef
57.
go back to reference Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386:1613–1623CrossRef Edwards KA, Baeumner AJ (2006) Optimization of DNA-tagged liposomes for use in microtiter plate analyses. Anal Bioanal Chem 386:1613–1623CrossRef
58.
go back to reference Edwards KA, Wang Y, Baeumner AJ (2010) Aptamer sandwich assays: human alpha-thrombin detection using liposome enhancement. Anal Bioanal Chem 398:2645–2654CrossRef Edwards KA, Wang Y, Baeumner AJ (2010) Aptamer sandwich assays: human alpha-thrombin detection using liposome enhancement. Anal Bioanal Chem 398:2645–2654CrossRef
59.
go back to reference Pack DW, Ng K, Maloney KM, Arnold FH (1997) Ligand-induced reorganization and assembly in synthetic lipid membranes. Supramol Sci 4:3–10CrossRef Pack DW, Ng K, Maloney KM, Arnold FH (1997) Ligand-induced reorganization and assembly in synthetic lipid membranes. Supramol Sci 4:3–10CrossRef
60.
go back to reference Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132CrossRef Periole X, Huber T, Marrink SJ, Sakmar TP (2007) G protein-coupled receptors self-assemble in dynamics simulations of model bilayers. J Am Chem Soc 129:10126–10132CrossRef
61.
go back to reference Dave N, Liu J (2012) Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chem Commun 48:3718–3720CrossRef Dave N, Liu J (2012) Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chem Commun 48:3718–3720CrossRef
62.
go back to reference Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550CrossRef Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550CrossRef
63.
go back to reference Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743CrossRef Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743CrossRef
64.
go back to reference Cao ZH, Tong R, Mishra A, Xu WC, Wong GCL, Cheng JJ, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRef Cao ZH, Tong R, Mishra A, Xu WC, Wong GCL, Cheng JJ, Lu Y (2009) Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew Chem Int Ed 48:6494–6498CrossRef
65.
go back to reference Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251CrossRef Kang H, O’Donoghue MB, Liu H, Tan W (2010) A liposome-based nanostructure for aptamer directed delivery. Chem Commun 46:249–251CrossRef
66.
go back to reference Mann AP, Bhavane RC, Somasunderam A, Montalvo-Ortiz BL, Ghaghada KB, Volk D, Nieves-Alicea R, Suh KS, Ferrari M, Annapragada A, Gorenstein DG, Tanaka T (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2:298–304 Mann AP, Bhavane RC, Somasunderam A, Montalvo-Ortiz BL, Ghaghada KB, Volk D, Nieves-Alicea R, Suh KS, Ferrari M, Annapragada A, Gorenstein DG, Tanaka T (2011) Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget 2:298–304
Metadata
Title
Liposomes for DNA Nanotechnology: Preparation, Properties, and Applications
Authors
Neeshma Dave
Juewen Liu
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-36077-0_4

Premium Partners