Skip to main content
Top

2018 | OriginalPaper | Chapter

11. Liquid Metal Enabled Flexible Exoskeleton or Artificial Muscle

Authors : Jing Liu, Liting Yi

Published in: Liquid Metal Biomaterials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explains the basic concept of a flexible mechanical joint for making human exoskeleton based on a low-melting-point alloy phase change effect. With the liquid-solid phase change capability, this unique joint can easily switch between its flexible and rigid states. In addition, the liquid metal electrode can be an important highly conductive and super compliant electrode for making artificial muscles with the unique capability of two-dimensional in-plane self-healing. Some of such opportunities were discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jarrasse N, Morel G (2011) Connecting a human limb to an exoskeleton. IEEE Trans Rob 28(3):697–709CrossRef Jarrasse N, Morel G (2011) Connecting a human limb to an exoskeleton. IEEE Trans Rob 28(3):697–709CrossRef
2.
go back to reference Petrič T, Gams A, Debevec T, Žlajpah L, Babič J (2013) Control approaches for robotic knee exoskeleton and their effects on human motion. Adv Robot 27(13):993–1002CrossRef Petrič T, Gams A, Debevec T, Žlajpah L, Babič J (2013) Control approaches for robotic knee exoskeleton and their effects on human motion. Adv Robot 27(13):993–1002CrossRef
3.
go back to reference Yan L, Wu J, Li YB, Liu JH, Yang F (2013) The design of lower extremity exoskeleton of power assist robot. Mater Sci Eng 278(3):618–621 Yan L, Wu J, Li YB, Liu JH, Yang F (2013) The design of lower extremity exoskeleton of power assist robot. Mater Sci Eng 278(3):618–621
4.
go back to reference Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209CrossRef Kao PC, Lewis CL, Ferris DP (2010) Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. J Biomech 43(2):203–209CrossRef
5.
go back to reference Perry JC, Powell JM, Rosen J (2009) Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm. Appl Bion Biomech 6(2):175–191CrossRef Perry JC, Powell JM, Rosen J (2009) Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm. Appl Bion Biomech 6(2):175–191CrossRef
6.
go back to reference Ferris DP, Sawicki GS, Daley MA (2007) A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J Humanoid Rob 4(3):507–528CrossRef Ferris DP, Sawicki GS, Daley MA (2007) A physiologist’s perspective on robotic exoskeletons for human locomotion. Int J Humanoid Rob 4(3):507–528CrossRef
7.
go back to reference Moreno JC, Brunetti F, Cabello EN, Cordero AF, Pons JL (2009) Analysis of the human interaction with a wearable lower-limb exoskeleton. Appl Bion Biomech 6(2):245–256CrossRef Moreno JC, Brunetti F, Cabello EN, Cordero AF, Pons JL (2009) Analysis of the human interaction with a wearable lower-limb exoskeleton. Appl Bion Biomech 6(2):245–256CrossRef
8.
go back to reference Kaminaga H, Ono J, Nakashima Y, Nakamura Y (2009) Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, 12–17 May 2009, pp 1577–1582 Kaminaga H, Ono J, Nakashima Y, Nakamura Y (2009) Development of backdrivable hydraulic joint mechanism for knee joint of humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA 2009), Kobe, 12–17 May 2009, pp 1577–1582
9.
go back to reference Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng 60(6):1636–1644CrossRef Gams A, Petrič T, Debevec T, Babič J (2013) Effects of robotic knee exoskeleton on human energy expenditure. IEEE Trans Biomed Eng 60(6):1636–1644CrossRef
10.
go back to reference Berring J, Kianfar K, Lira C, Menon C, Scarpa F (2010) A smart hydraulic joint for future implementation in robotic structures. Robotica 28(7):1045–1056CrossRef Berring J, Kianfar K, Lira C, Menon C, Scarpa F (2010) A smart hydraulic joint for future implementation in robotic structures. Robotica 28(7):1045–1056CrossRef
11.
go back to reference Kiguchi K, Iwami K, Yasuda M, Watanabe K, Fukuda T (2003) An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Trans Mechatron 8(1):125–135CrossRef Kiguchi K, Iwami K, Yasuda M, Watanabe K, Fukuda T (2003) An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Trans Mechatron 8(1):125–135CrossRef
12.
go back to reference Angeles J (2003) Fundamentals of robotic mechanical systems. Springer, Berlin Angeles J (2003) Fundamentals of robotic mechanical systems. Springer, Berlin
13.
go back to reference Panich S (2010) Kinematic analysis of exoskeleton suit for human arm. J Comput Sci 6(11):1272–1275CrossRef Panich S (2010) Kinematic analysis of exoskeleton suit for human arm. J Comput Sci 6(11):1272–1275CrossRef
14.
go back to reference Banala SK, Seok HK, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRef Banala SK, Seok HK, Agrawal SK, Scholz JP (2009) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRef
15.
go back to reference Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):e56137CrossRef Malcolm P, Derave W, Galle S, De Clercq D (2013) A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking. PLoS ONE 8(2):e56137CrossRef
16.
go back to reference Wiggin MB, Sawicki GS, Collins SH (2011) An exoskeleton using controlled energy storage and release to aid ankle propulsion. In: IEEE International Conference on Rehabilitation Robotics (ICORR 2011), Zurich, 29 June–1 July 2011, pp 1–5 Wiggin MB, Sawicki GS, Collins SH (2011) An exoskeleton using controlled energy storage and release to aid ankle propulsion. In: IEEE International Conference on Rehabilitation Robotics (ICORR 2011), Zurich, 29 June–1 July 2011, pp 1–5
17.
go back to reference Lee H, Kim W, Han J, Han C (2012) The technical trend of the exoskeleton robot system for human power assistance. Int J Precis Eng Manuf 13(8):1491–1497CrossRef Lee H, Kim W, Han J, Han C (2012) The technical trend of the exoskeleton robot system for human power assistance. Int J Precis Eng Manuf 13(8):1491–1497CrossRef
18.
go back to reference Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15:367–378CrossRef Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL (2007) Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng 15:367–378CrossRef
19.
go back to reference Park YL, Chen B, Pérez-Arancibia NO, Stirling L, Wood RJ, Goldfield EC, Nagpal R (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir Biomim 9:016007CrossRef Park YL, Chen B, Pérez-Arancibia NO, Stirling L, Wood RJ, Goldfield EC, Nagpal R (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir Biomim 9:016007CrossRef
20.
go back to reference Deng YG, Liu J (2014) Flexible mechanical joint as human exoskeleton using low-melting-point alloy. ASME J Med Devices 8:044506CrossRef Deng YG, Liu J (2014) Flexible mechanical joint as human exoskeleton using low-melting-point alloy. ASME J Med Devices 8:044506CrossRef
21.
go back to reference Liu Y, Gao M, Mei SF, Han YT, Liu J (2013) Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl Phys Lett 102:064101CrossRef Liu Y, Gao M, Mei SF, Han YT, Liu J (2013) Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators. Appl Phys Lett 102:064101CrossRef
22.
go back to reference Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244CrossRef
23.
go back to reference Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, John OD, Parker KK (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797CrossRef Nawroth JC, Lee H, Feinberg AW, Ripplinger CM, McCain ML, Grosberg A, John OD, Parker KK (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797CrossRef
24.
go back to reference Baughman RH (2005) Playing nature’s game with artificial muscles. Science 308:63–65CrossRef Baughman RH (2005) Playing nature’s game with artificial muscles. Science 308:63–65CrossRef
25.
go back to reference Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with over 100% strain. Science 287:836–839CrossRef Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with over 100% strain. Science 287:836–839CrossRef
26.
go back to reference Pelrine R, Kornbluh R, Kofod G (2000) High-strain actuator materials based on dielectric elastomers. Adv Mater 12:1223–1225CrossRef Pelrine R, Kornbluh R, Kofod G (2000) High-strain actuator materials based on dielectric elastomers. Adv Mater 12:1223–1225CrossRef
27.
go back to reference Carpi F, Chiarelli P, Mazzoldi A, Rossi DD (2003) Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counter loads. Sens Actuators A-Phys 107:85–95CrossRef Carpi F, Chiarelli P, Mazzoldi A, Rossi DD (2003) Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counter loads. Sens Actuators A-Phys 107:85–95CrossRef
28.
go back to reference O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101CrossRef O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101CrossRef
29.
go back to reference Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
30.
go back to reference Yuan W, Hu LB, Yu ZB et al (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20:621–625CrossRef Yuan W, Hu LB, Yu ZB et al (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20:621–625CrossRef
31.
go back to reference Hyun DC, Park M, Park C et al (2011) Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 23:2946–2950CrossRef Hyun DC, Park M, Park C et al (2011) Ordered zigzag stripes of polymer gel/metal nanoparticle composites for highly stretchable conductive electrodes. Adv Mater 23:2946–2950CrossRef
32.
go back to reference Gray DS, Tien J, Chen CS (2004) High conductivity elastomeric electronics. Adv Mater 16:393–397CrossRef Gray DS, Tien J, Chen CS (2004) High conductivity elastomeric electronics. Adv Mater 16:393–397CrossRef
33.
go back to reference Lacour SP, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404CrossRef Lacour SP, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404CrossRef
34.
go back to reference Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J, Haddon RC (2005) Electronic properties of single-walled carbon nanotube networks. J Am Chem Soc 127:5990–5995CrossRef Bekyarova E, Itkis ME, Cabrera N, Zhao B, Yu A, Gao J, Haddon RC (2005) Electronic properties of single-walled carbon nanotube networks. J Am Chem Soc 127:5990–5995CrossRef
35.
go back to reference Arora S, Ghosh T, Muth J (2007) Dielectric elastomer based prototype fiber actuators. Sens Actuators A-Phys 136:321–328CrossRef Arora S, Ghosh T, Muth J (2007) Dielectric elastomer based prototype fiber actuators. Sens Actuators A-Phys 136:321–328CrossRef
36.
go back to reference Morley NB, Burris J, Cadwallader LC, Nornberg MD (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192CrossRef Morley NB, Burris J, Cadwallader LC, Nornberg MD (2008) GaInSn usage in the research laboratory. Rev Sci Instrum 79(5):112–192CrossRef
37.
go back to reference Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 7(9):e45485CrossRef Gao Y, Li H, Liu J (2012) Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE 7(9):e45485CrossRef
38.
go back to reference Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1-7 Zheng Y, He Z, Gao Y, Liu J (2013) Direct desktop printed-circuits-on-paper flexible electronics. Sci Rep 3:1786-1-7
39.
go back to reference Palleau E, Reece S, Desai SC, Smith ME, Dickey MD (2013) Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater 25:1589–1592CrossRef Palleau E, Reece S, Desai SC, Smith ME, Dickey MD (2013) Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater 25:1589–1592CrossRef
Metadata
Title
Liquid Metal Enabled Flexible Exoskeleton or Artificial Muscle
Authors
Jing Liu
Liting Yi
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-5607-9_11

Premium Partners