Skip to main content
Top

2016 | OriginalPaper | Chapter

2. Lithium Batteries

Authors : Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib

Published in: Lithium Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

First attempts to create batteries using an ion other than the proton were done in the 1970s with the fabrication of lithium primary cells. It was the fast development of the electronic devices that pouch electrochemists in the new world of lithium. After primary cells came secondary (rechargeable) lithium batteries in the 1980s. Innovations and advances in insertion electrode materials have improved the stored energy compared with other systems. For half-a-century, lithium batteries are increasingly used in a huge number of applications from watches, portable electronics to electric transportation and stationary grid storage. While older technologies such as Zn-MnO2, lead-acid, and Ni-Cd are still used, the increasing battery market is now dominated by Li-ion batteries. The purpose of this chapter is to introduce the technologies of primary and secondary lithium electrochemical cells with a special focus on lithium-ion batteries and lithium-metal polymer batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Julien C, Nazri GA (1994) Solid state batteries: materials design and optimization. Kluwer, BostonCrossRef Julien C, Nazri GA (1994) Solid state batteries: materials design and optimization. Kluwer, BostonCrossRef
3.
go back to reference Pistoia G (1994) Lithium batteries: new materials, developments and perspectives. Elsevier, Amsterdam Pistoia G (1994) Lithium batteries: new materials, developments and perspectives. Elsevier, Amsterdam
4.
go back to reference Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill, New York
5.
go back to reference Bergveld HJ, Kruijt WS, Notten PHL (2002) Battery management systems, design by modelling. Kluwer Academic Publishers, DordrechtCrossRef Bergveld HJ, Kruijt WS, Notten PHL (2002) Battery management systems, design by modelling. Kluwer Academic Publishers, DordrechtCrossRef
6.
go back to reference Van Schalkwijk WA, Scrosati B (2002) Advances in lithium batteries. Kluwer, New YorkCrossRef Van Schalkwijk WA, Scrosati B (2002) Advances in lithium batteries. Kluwer, New YorkCrossRef
7.
go back to reference Nazri GA, Pistoia G (2003) Lithium batteries, science and technology. Springer, New YorkCrossRef Nazri GA, Pistoia G (2003) Lithium batteries, science and technology. Springer, New YorkCrossRef
8.
go back to reference Balbuena PB, Wang Y (2004) Lithium-ion batteries, solid-electrolyte interphase. Imperial College Press, LondonCrossRef Balbuena PB, Wang Y (2004) Lithium-ion batteries, solid-electrolyte interphase. Imperial College Press, LondonCrossRef
9.
go back to reference Wakihara M, Yamamoto O (2008) Lithium ion batteries: fundamentals and performance. Wiley, Weinheim Wakihara M, Yamamoto O (2008) Lithium ion batteries: fundamentals and performance. Wiley, Weinheim
10.
go back to reference Yoshio M, Brodd RJ, Kozawa A (2009) Lithium batteries, science and technologies. Springer, New YorkCrossRef Yoshio M, Brodd RJ, Kozawa A (2009) Lithium batteries, science and technologies. Springer, New YorkCrossRef
11.
13.
go back to reference Yuan X, Liu H, Jiujun Z (2012) Lithium batteries: advanced materials and technologies. CRC Press, Boca Raton Yuan X, Liu H, Jiujun Z (2012) Lithium batteries: advanced materials and technologies. CRC Press, Boca Raton
15.
go back to reference Abu-Lebdeh Y, Davidson I (2013) Nanotechnology for lithium-ion batteries. Springer, New YorkCrossRef Abu-Lebdeh Y, Davidson I (2013) Nanotechnology for lithium-ion batteries. Springer, New YorkCrossRef
16.
go back to reference Scrosati B, Abraham KM, Van Schalkwijk WA, Hassoun J (2013) Lithium batteries: advanced technologies and applications. Wiley, HobokenCrossRef Scrosati B, Abraham KM, Van Schalkwijk WA, Hassoun J (2013) Lithium batteries: advanced technologies and applications. Wiley, HobokenCrossRef
18.
go back to reference Julien C (2000) Design considerations for lithium batteries. In: Julien C, Stoynov Z (eds) Materials for lithium-ion batteries. Kluwer, Dordrecht, pp 1–20CrossRef Julien C (2000) Design considerations for lithium batteries. In: Julien C, Stoynov Z (eds) Materials for lithium-ion batteries. Kluwer, Dordrecht, pp 1–20CrossRef
19.
go back to reference Armand MB, Whittingham MS, Huggins RA (1972) The iron cyanide bronzes. Mater Res Bull 7:101–108CrossRef Armand MB, Whittingham MS, Huggins RA (1972) The iron cyanide bronzes. Mater Res Bull 7:101–108CrossRef
20.
go back to reference Armand MB (1973) Lithium intercalation in CrO3 using n-butyllithium. In: Van Gool W (ed) Fast ion transport in solids. North Holland, Amsterdam, pp 665–673 Armand MB (1973) Lithium intercalation in CrO3 using n-butyllithium. In: Van Gool W (ed) Fast ion transport in solids. North Holland, Amsterdam, pp 665–673
21.
go back to reference Gamble FR, Osiecki JH, Cais M, Pisharody R, DiSalvo FL, Geballe TH (1971) Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174:493–497CrossRef Gamble FR, Osiecki JH, Cais M, Pisharody R, DiSalvo FL, Geballe TH (1971) Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174:493–497CrossRef
22.
go back to reference Dines MB (1975) Intercalation of metallocenes in the layered transition-metal dichalcogenides. Science 188:1210–1211CrossRef Dines MB (1975) Intercalation of metallocenes in the layered transition-metal dichalcogenides. Science 188:1210–1211CrossRef
23.
go back to reference Dines MB (1975) Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Mater Res Bull 10:287–292CrossRef Dines MB (1975) Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Mater Res Bull 10:287–292CrossRef
24.
go back to reference Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenaide hosts. Prog Solid State Chem 12:41–99CrossRef Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenaide hosts. Prog Solid State Chem 12:41–99CrossRef
25.
go back to reference Whittingham MS (1982) Intercalation chemistry: an introduction. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 1–18 Whittingham MS (1982) Intercalation chemistry: an introduction. In: Whittingham MS, Jacobson AJ (eds) Intercalation chemistry. Academic, New York, pp 1–18
26.
go back to reference Winn DA, Steele BCH (1976) Thermodynamic characterization of non-stoichiometric titanium disulphide. Mater Res Bull 11:551–558CrossRef Winn DA, Steele BCH (1976) Thermodynamic characterization of non-stoichiometric titanium disulphide. Mater Res Bull 11:551–558CrossRef
27.
go back to reference Winn DA, Shemilt JM, Steele BCH (1976) Titanium disulphide: a solid solution electrode for sodium and lithium. Mater Res Bull 11:559–566CrossRef Winn DA, Shemilt JM, Steele BCH (1976) Titanium disulphide: a solid solution electrode for sodium and lithium. Mater Res Bull 11:559–566CrossRef
28.
go back to reference Whittingham MS (1977) Preparation of stoichiometric titanium disulfide. US Patent 4,007,055, Accessed 8 Feb 1977 Whittingham MS (1977) Preparation of stoichiometric titanium disulfide. US Patent 4,007,055, Accessed 8 Feb 1977
29.
go back to reference Murphy DW, Trumbore FA (1976) The chemistry of TiS3 and NbSe3 cathodes. J Electrochem Soc 123:960–964CrossRef Murphy DW, Trumbore FA (1976) The chemistry of TiS3 and NbSe3 cathodes. J Electrochem Soc 123:960–964CrossRef
30.
go back to reference Dickens PG, French SJ, Hight AT, Pye MF (1979) Phase relationships in the ambient temperature Li x V2O5 system (0.1 < x < 1.0). Mater Res Bull 14:1295–1299CrossRef Dickens PG, French SJ, Hight AT, Pye MF (1979) Phase relationships in the ambient temperature Li x V2O5 system (0.1 < x < 1.0). Mater Res Bull 14:1295–1299CrossRef
31.
go back to reference Toronto Globe and Mail (1989) Cellular phone recall may cause setback for Moli. Accessed 15 Aug 1989 Toronto Globe and Mail (1989) Cellular phone recall may cause setback for Moli. Accessed 15 Aug 1989
32.
go back to reference Akridge JR, Vourlis H (1986) Solid state batteries using vitreous solid electrolytes. Solid State Ionics 18–19:1082–1087CrossRef Akridge JR, Vourlis H (1986) Solid state batteries using vitreous solid electrolytes. Solid State Ionics 18–19:1082–1087CrossRef
33.
go back to reference Anderman M, Lunquist JT, Johnson SL, Gionannoi TR (1989) Rechargeable lithium-titanium disulphide cells of spirally-wound design. J Power Sourc 26:309–312CrossRef Anderman M, Lunquist JT, Johnson SL, Gionannoi TR (1989) Rechargeable lithium-titanium disulphide cells of spirally-wound design. J Power Sourc 26:309–312CrossRef
34.
go back to reference Abraham KM, Pasquariello DM, Schwartz DA (1989) Practical rechargeable lithium batteries. J Power Sourc 26:247–255CrossRef Abraham KM, Pasquariello DM, Schwartz DA (1989) Practical rechargeable lithium batteries. J Power Sourc 26:247–255CrossRef
35.
go back to reference Armand M (1980) Intercalation electrodes. In: Murphy DW, Broadhead J, Steele BCH (eds) Materials for advanced batteries. Plenum Press, New York, pp 145–161CrossRef Armand M (1980) Intercalation electrodes. In: Murphy DW, Broadhead J, Steele BCH (eds) Materials for advanced batteries. Plenum Press, New York, pp 145–161CrossRef
36.
go back to reference Lazzari M, Scrosati B (1980) A cycleable lithium organic electrolyte cell based on two intercalation electrodes. J Electrochem Soc 127:773–774CrossRef Lazzari M, Scrosati B (1980) A cycleable lithium organic electrolyte cell based on two intercalation electrodes. J Electrochem Soc 127:773–774CrossRef
37.
go back to reference Nagaura T, Nagamine M, Tanabe I, Miyamoto N (1989) Solid state batteries with sulfide-based solid electrolytes. Prog Batteries Sol Cells 8:84–88 Nagaura T, Nagamine M, Tanabe I, Miyamoto N (1989) Solid state batteries with sulfide-based solid electrolytes. Prog Batteries Sol Cells 8:84–88
38.
go back to reference Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209–212 Nagaura T, Tozawa K (1990) Lithium ion rechargeable battery. Prog Batteries Solar Cells 9:209–212
39.
go back to reference Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors. US Patent 4,302,518, Accessed 24 Nov 1981 Goodenough JB, Mizuchima K (1981) Electrochemical cell with new fast ion conductors. US Patent 4,302,518, Accessed 24 Nov 1981
40.
go back to reference Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Li x CoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRef Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) Li x CoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRef
41.
go back to reference Armand M, Touzain P (1977) Graphite intercalation compounds as cathode materials. Mater Sci Eng 31:319–329CrossRef Armand M, Touzain P (1977) Graphite intercalation compounds as cathode materials. Mater Sci Eng 31:319–329CrossRef
42.
go back to reference Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221CrossRef Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69:212–221CrossRef
45.
go back to reference Julien C (1997) Solid state batteries. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, pp 372–406 Julien C (1997) Solid state batteries. In: Gellings PJ, Bouwmeester HJM (eds) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, pp 372–406
46.
go back to reference Ritchie AG, Bowles PG, Scattergood DP (2004) Lithium-iron/iron sulphide rechargeable batteries. J Power Sourc 136:276–280CrossRef Ritchie AG, Bowles PG, Scattergood DP (2004) Lithium-iron/iron sulphide rechargeable batteries. J Power Sourc 136:276–280CrossRef
47.
go back to reference Jensen J (1980) Energy storage. Butterworths, London Jensen J (1980) Energy storage. Butterworths, London
48.
go back to reference Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery – 35 years of successful clinical use. ECS Trans 6:1–7CrossRef Holmes CF (2007) The lithium/iodine-polyvinylpyridine battery – 35 years of successful clinical use. ECS Trans 6:1–7CrossRef
49.
go back to reference Mallela VS, Ilankumaran V, Rao NS (2004) Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J 4:201–212 Mallela VS, Ilankumaran V, Rao NS (2004) Trends in cardiac pacemaker batteries. Indian Pacing Electrophysiol J 4:201–212
50.
go back to reference Schlaikjer CR, Liang CC (1971) Ionic conduction in calcium doped polycrystalline lithium iodide. J Electrochem Soc 118:1447–1450CrossRef Schlaikjer CR, Liang CC (1971) Ionic conduction in calcium doped polycrystalline lithium iodide. J Electrochem Soc 118:1447–1450CrossRef
51.
go back to reference Phillips GM, Untereker DF (1980) In: Owens BB, Margalit N (eds) Power sources for biomedical implantable applications and ambient temperature lithium batteries. The Electrochem Soc Proc Ser PV 870-4, p 195 Phillips GM, Untereker DF (1980) In: Owens BB, Margalit N (eds) Power sources for biomedical implantable applications and ambient temperature lithium batteries. The Electrochem Soc Proc Ser PV 870-4, p 195
52.
go back to reference Liang CC, Joshi AV, Hamilton WE (1978) Solid-state storage batteries. J Appl Electrochem 8:445–454CrossRef Liang CC, Joshi AV, Hamilton WE (1978) Solid-state storage batteries. J Appl Electrochem 8:445–454CrossRef
53.
go back to reference Park KH, Miles MH, Bliss DE, Stilwell D, Hollins RA, Rhein RA (1988) The discharge behaviour of active metal anodes in bromine trifluoride. J Electrochem Soc 135:2901–2902CrossRef Park KH, Miles MH, Bliss DE, Stilwell D, Hollins RA, Rhein RA (1988) The discharge behaviour of active metal anodes in bromine trifluoride. J Electrochem Soc 135:2901–2902CrossRef
54.
go back to reference Goodson FR, Shipman WH, McCartney JF (1978) Lithium anode, bromide trifluoride, antimony pentafluoride. US Patent 4,107,401 A, Accessed 15 Aug 1978 Goodson FR, Shipman WH, McCartney JF (1978) Lithium anode, bromide trifluoride, antimony pentafluoride. US Patent 4,107,401 A, Accessed 15 Aug 1978
55.
go back to reference Crepy G, Buchel JP (1993) Lithium/bromide trifluoride electrochemical cell designed to be discharged after being activated and stored. US Patent 5,188,913 A, Accessed 23 Feb 1993 Crepy G, Buchel JP (1993) Lithium/bromide trifluoride electrochemical cell designed to be discharged after being activated and stored. US Patent 5,188,913 A, Accessed 23 Feb 1993
56.
go back to reference Bowden WL, Dey AN (1980) Primary Li/SOCl2 cells XI. SOCl2 reduction mechanism in a supporting electrolyte. J Electrochem Soc 127:1419–1426CrossRef Bowden WL, Dey AN (1980) Primary Li/SOCl2 cells XI. SOCl2 reduction mechanism in a supporting electrolyte. J Electrochem Soc 127:1419–1426CrossRef
57.
go back to reference Dey AN, Holmes RW (1980) Safety studies on Li/SO2 cells: investigations of alternative organic electrolytes for improved safety. J Electrochem Soc 127:1886–1890CrossRef Dey AN, Holmes RW (1980) Safety studies on Li/SO2 cells: investigations of alternative organic electrolytes for improved safety. J Electrochem Soc 127:1886–1890CrossRef
59.
go back to reference Leising RA, Takeuchi ES (1993) Solid-state cathode materials for lithium batteries: effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide. Chem Mater 5:738–742CrossRef Leising RA, Takeuchi ES (1993) Solid-state cathode materials for lithium batteries: effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide. Chem Mater 5:738–742CrossRef
60.
go back to reference Holmes CF (2001) The role of lithium batteries in modern health care. J Power Sourc 97–98:739–741CrossRef Holmes CF (2001) The role of lithium batteries in modern health care. J Power Sourc 97–98:739–741CrossRef
61.
go back to reference Root MJ (2010) Lithium-manganese dioxide cells for implantable defibrillator devices, discharge voltage models. J Power Sourc 195:5089–5093CrossRef Root MJ (2010) Lithium-manganese dioxide cells for implantable defibrillator devices, discharge voltage models. J Power Sourc 195:5089–5093CrossRef
62.
go back to reference Chen K, Meritt DR, Howard WG, Schmidt CL, Skarstad PM (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sourc 162:837–840CrossRef Chen K, Meritt DR, Howard WG, Schmidt CL, Skarstad PM (2006) Hybrid cathode lithium batteries for implantable medical applications. J Power Sourc 162:837–840CrossRef
63.
go back to reference Walk CR (1983) Lithium-vanadium pentoxide cells. In: Gabano JP (ed) Lithium batteries. Academic, London, pp 265–280 Walk CR (1983) Lithium-vanadium pentoxide cells. In: Gabano JP (ed) Lithium batteries. Academic, London, pp 265–280
64.
go back to reference Whittingham MS (1975) Mechanism of reduction of the fluorographite cathode. J Electrochem Soc 122:526–527CrossRef Whittingham MS (1975) Mechanism of reduction of the fluorographite cathode. J Electrochem Soc 122:526–527CrossRef
65.
go back to reference Touhara H, Kadono K, Fujii Y, Watanabe N (1987) On the structure of graphite fluoride. Z Anorg Allg Chem 544:7–20CrossRef Touhara H, Kadono K, Fujii Y, Watanabe N (1987) On the structure of graphite fluoride. Z Anorg Allg Chem 544:7–20CrossRef
66.
go back to reference Lam P, Yazami R (2006) Physical characteristics and rate performance of (CF x ) n (0.33 < x < 0.66) in lithium batteries. J Power Sourc 153:354–359CrossRef Lam P, Yazami R (2006) Physical characteristics and rate performance of (CF x ) n (0.33 < x < 0.66) in lithium batteries. J Power Sourc 153:354–359CrossRef
67.
go back to reference Nagasubramanian G (2007) Fabrication and testing capabilities for 18650 Li/(CF x ) n cells. Int J Electrochem Sci 2:913–922 Nagasubramanian G (2007) Fabrication and testing capabilities for 18650 Li/(CF x ) n cells. Int J Electrochem Sci 2:913–922
68.
go back to reference Holmes CF, Takeuchi ES, Ebel SJ (1996) Lithium/carbon monofluoride (Li//CFx): a new pacemaker battery. Pacing Clin Electrophys 19:1836–1840CrossRef Holmes CF, Takeuchi ES, Ebel SJ (1996) Lithium/carbon monofluoride (Li//CFx): a new pacemaker battery. Pacing Clin Electrophys 19:1836–1840CrossRef
70.
go back to reference Broussely M (1978) Organic solvent electrolytes for high specific energy primary cells. US Patent 4,129,691A, Accessed 12 Dec 1978 Broussely M (1978) Organic solvent electrolytes for high specific energy primary cells. US Patent 4,129,691A, Accessed 12 Dec 1978
71.
go back to reference Webber A (2009) Low temperature Li/FeS2 battery. US paten 7,510,808B2, Accessed 31 Mar 2009 Webber A (2009) Low temperature Li/FeS2 battery. US paten 7,510,808B2, Accessed 31 Mar 2009
72.
go back to reference Clark MB (1982) Lithium-iron disulfide cells. Academic, New York Clark MB (1982) Lithium-iron disulfide cells. Academic, New York
73.
go back to reference Shao-Horn Y, Osmialowski S, Horn QC (2002) Nano-FeS2 for commercial Li/FeS2 primary batteries. J Electrochem Soc 149:A1199–A1502 Shao-Horn Y, Osmialowski S, Horn QC (2002) Nano-FeS2 for commercial Li/FeS2 primary batteries. J Electrochem Soc 149:A1199–A1502
74.
go back to reference West K, Crespi AM (1995) Lithium insertion into silver vanadium oxide Ag2V4O11. J Power Sourc 54:334–337CrossRef West K, Crespi AM (1995) Lithium insertion into silver vanadium oxide Ag2V4O11. J Power Sourc 54:334–337CrossRef
75.
go back to reference Crespi AM (1993) Silver vanadium oxide cathode material and method of preparation. US Patent 5,221,453, Accessed 27 Sept 1990 Crespi AM (1993) Silver vanadium oxide cathode material and method of preparation. US Patent 5,221,453, Accessed 27 Sept 1990
76.
go back to reference Crespi A, Schmildt C, Norton J, Chen K, Skarstad P (2001) Modeling and characterization of the resistance of lithium/SVO for implantable cardioverter-defibrillators. J Electrochem Soc 148:A30–A37CrossRef Crespi A, Schmildt C, Norton J, Chen K, Skarstad P (2001) Modeling and characterization of the resistance of lithium/SVO for implantable cardioverter-defibrillators. J Electrochem Soc 148:A30–A37CrossRef
77.
go back to reference Chung JS, Sohn HJ (2002) Electrochemical behaviours of CuS as a cathode material for lithium secondary batteries. J Power Sourc 108:226–231CrossRef Chung JS, Sohn HJ (2002) Electrochemical behaviours of CuS as a cathode material for lithium secondary batteries. J Power Sourc 108:226–231CrossRef
78.
go back to reference Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRef
79.
go back to reference Rao BML, Francis RW, Christopher HA (1977) Lithium-aluminum electrode. J Electrochem Soc 124:1490–1492CrossRef Rao BML, Francis RW, Christopher HA (1977) Lithium-aluminum electrode. J Electrochem Soc 124:1490–1492CrossRef
80.
go back to reference Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRef Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417CrossRef
81.
go back to reference Ota H (2004) Characterization of lithium electrodes in lithium imides/ethylene carbonate and cyclic ether electrolytes. Surface chemistry. J Electrochem Soc 151:A437–A446CrossRef Ota H (2004) Characterization of lithium electrodes in lithium imides/ethylene carbonate and cyclic ether electrolytes. Surface chemistry. J Electrochem Soc 151:A437–A446CrossRef
82.
go back to reference Von Sacken U, Nodwell E, Sundher A, Dahn JR (1990) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J Power Sourc 54:240–245CrossRef Von Sacken U, Nodwell E, Sundher A, Dahn JR (1990) Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries. J Power Sourc 54:240–245CrossRef
83.
go back to reference Whittingham MS (1978) The electrochemical characteristics of VSe2 in lithium cells. Mater Res Bul 13:959–965CrossRef Whittingham MS (1978) The electrochemical characteristics of VSe2 in lithium cells. Mater Res Bul 13:959–965CrossRef
84.
go back to reference Akridge JR, Vourlis H (1988) Performance of Li/TiS2 solid state batteries using phosphorous chacogenide network former glasses as solid electrolyte. Solid State Ionics 28–30:841–846CrossRef Akridge JR, Vourlis H (1988) Performance of Li/TiS2 solid state batteries using phosphorous chacogenide network former glasses as solid electrolyte. Solid State Ionics 28–30:841–846CrossRef
85.
go back to reference Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84CrossRef Py MA, Haering RR (1983) Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can J Phys 61:76–84CrossRef
86.
go back to reference Trumbore FA (1989) Niobium triselenide: a unique rechargeable positive electrode material. J Power Sourc 26:65–75CrossRef Trumbore FA (1989) Niobium triselenide: a unique rechargeable positive electrode material. J Power Sourc 26:65–75CrossRef
87.
go back to reference Schöllhorn R, Kuhlmann R, Besenhard JO (1976) Topotactic redox reactions and ion exchange of layered MoO3 bronzes. Mater Res Bull 11:83–90CrossRef Schöllhorn R, Kuhlmann R, Besenhard JO (1976) Topotactic redox reactions and ion exchange of layered MoO3 bronzes. Mater Res Bull 11:83–90CrossRef
88.
go back to reference Besenhard JO, Schöllhorn R (1976) The discharge reaction mechanism of the MoO3 electrode in organic electrolytes. J Power Sourc 1:267–276CrossRef Besenhard JO, Schöllhorn R (1976) The discharge reaction mechanism of the MoO3 electrode in organic electrolytes. J Power Sourc 1:267–276CrossRef
89.
go back to reference Murphy DW, Christian PA, DiSalvo FJ, Waszczak JV (1979) Lithium incorporation by vanadium pentoxide. Inorg Chem 18:2800–2803CrossRef Murphy DW, Christian PA, DiSalvo FJ, Waszczak JV (1979) Lithium incorporation by vanadium pentoxide. Inorg Chem 18:2800–2803CrossRef
90.
go back to reference Labat J, Cocciantelli JM (1990) Rechargeable electrochemical cell having a cathode based on vanadium oxide. US Patent No. 5,219,677, Accessed 11 Dec 1990 Labat J, Cocciantelli JM (1990) Rechargeable electrochemical cell having a cathode based on vanadium oxide. US Patent No. 5,219,677, Accessed 11 Dec 1990
91.
go back to reference Margalit N, Walk CR (1995) Lithium ion battery with lithium vanadium pentoxide positive electrode. World Patent WO 1996006465 A1, Accessed 18 Aug 1995 Margalit N, Walk CR (1995) Lithium ion battery with lithium vanadium pentoxide positive electrode. World Patent WO 1996006465 A1, Accessed 18 Aug 1995
92.
go back to reference Desilvestro J, Haas O (1990) Metal oxide cathode materials for electrochemical energy storage. J Electrochem Soc 137:5C–22CCrossRef Desilvestro J, Haas O (1990) Metal oxide cathode materials for electrochemical energy storage. J Electrochem Soc 137:5C–22CCrossRef
93.
go back to reference Zaghib K, Mauger A, Groult H, Goodenough JB, Julien CM (2013) Advanced electrodes for high power Li-ion batteries. Materials 6:1028–1049CrossRef Zaghib K, Mauger A, Groult H, Goodenough JB, Julien CM (2013) Advanced electrodes for high power Li-ion batteries. Materials 6:1028–1049CrossRef
94.
go back to reference Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. Inorganics 2:132–154CrossRef
95.
go back to reference Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sourc 232:357–369CrossRef Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium rechargeable batteries: status and trends. J Power Sourc 232:357–369CrossRef
96.
go back to reference Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954CrossRef Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I, Mauger A, Julien CM (2011) Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sourc 196:3949–3954CrossRef
97.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mat 22:587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mat 22:587–603CrossRef
98.
go back to reference Peled E (1979) The electrochemical behaviour of alkali and alkaline earth metals in nonaqueous battery systems. The solid electrolyte interphase model. J Electrochem Soc 126:2047–2051CrossRef Peled E (1979) The electrochemical behaviour of alkali and alkaline earth metals in nonaqueous battery systems. The solid electrolyte interphase model. J Electrochem Soc 126:2047–2051CrossRef
99.
go back to reference Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into Li x MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331CrossRef Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into Li x MO y host materials (M = Ni, Mn). J Electrochem Soc 147:1322–1331CrossRef
100.
go back to reference Ferg E, Gummow RJ, Dekock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147–L150CrossRef Ferg E, Gummow RJ, Dekock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147–L150CrossRef
101.
go back to reference Peramunage D, Abraham KM (1998) Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145:2609–2615CrossRef Peramunage D, Abraham KM (1998) Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells. J Electrochem Soc 145:2609–2615CrossRef
102.
go back to reference Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sourc 81:902–905CrossRef Jansen AN, Kahaian AJ, Kepler KD, Nelson PA, Amine K, Dees DW, Vissers DR, Thackeray MM (1999) Development of a high-power lithium-ion battery. J Power Sourc 81:902–905CrossRef
103.
go back to reference Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) Steady-state polarization measurements of lithium insertion electrodes for high-power lithium-ion batteries. J Solid State Electrochem 128:979–985CrossRef Ohzuku T, Yamato R, Kawai T, Ariyoshi K (2008) Steady-state polarization measurements of lithium insertion electrodes for high-power lithium-ion batteries. J Solid State Electrochem 128:979–985CrossRef
104.
go back to reference Ariyoshi K, Ohzuku T (2007) Conceptual design for 12 V “lead-free” accumulators for automobile and stationary applications. J Power Sourc 174:1258–1262CrossRef Ariyoshi K, Ohzuku T (2007) Conceptual design for 12 V “lead-free” accumulators for automobile and stationary applications. J Power Sourc 174:1258–1262CrossRef
105.
go back to reference Lu W, Belharouak I, Liu J, Amine K (2007) Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell. J Power Sourc 174:673–677CrossRef Lu W, Belharouak I, Liu J, Amine K (2007) Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell. J Power Sourc 174:673–677CrossRef
106.
go back to reference Belharouak I, Sun YK, Lu W, Amine K (2007) On the safety of the Li4Ti5O12 ∕LiMn2O4 lithium-ion battery system batteries and energy storage. J Electrochem Soc 154:A1083–A1087CrossRef Belharouak I, Sun YK, Lu W, Amine K (2007) On the safety of the Li4Ti5O12 ∕LiMn2O4 lithium-ion battery system batteries and energy storage. J Electrochem Soc 154:A1083–A1087CrossRef
107.
go back to reference Du Pasquier A, Huang CC, Spitler T (2009) Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J Power Sourc 186:508–514CrossRef Du Pasquier A, Huang CC, Spitler T (2009) Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life. J Power Sourc 186:508–514CrossRef
108.
go back to reference Amine K, Belharouak I, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057CrossRef Amine K, Belharouak I, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057CrossRef
109.
go back to reference Reale P, Panero S, Scrosati B, Garche J, Wohlfahrt-Mehrens M, Wachtler M (2004) A safe, low-cost, and sustainable lithium-ion polymer battery. J Electrochem Soc 151:A2138–A2142CrossRef Reale P, Panero S, Scrosati B, Garche J, Wohlfahrt-Mehrens M, Wachtler M (2004) A safe, low-cost, and sustainable lithium-ion polymer battery. J Electrochem Soc 151:A2138–A2142CrossRef
110.
go back to reference Reale P, Fernicola A, Scrosati B (2009) Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sourc 194:182–189CrossRef Reale P, Fernicola A, Scrosati B (2009) Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sourc 194:182–189CrossRef
111.
go back to reference Sun LQ, Cui RH, Jalbout AF, Li MJ, Pan XM, Wang RS, Xie HM (2009) LiFePO4 as an optimum power cell material. J Power Sourc 189:522–526CrossRef Sun LQ, Cui RH, Jalbout AF, Li MJ, Pan XM, Wang RS, Xie HM (2009) LiFePO4 as an optimum power cell material. J Power Sourc 189:522–526CrossRef
112.
go back to reference Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries and energy storage. J Electrochem Soc 156:A1041–A1046CrossRef Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM (2009) Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries and energy storage. J Electrochem Soc 156:A1041–A1046CrossRef
113.
go back to reference Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200CrossRef Zaghib K, Dontigny M, Guerfi A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Julien CM (2012) An improved high-power battery with increased thermal operating range: C-LiFePO4//C-Li4Ti5O12. J Power Sourc 216:192–200CrossRef
114.
go back to reference Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 1270–1271 Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 1270–1271
115.
go back to reference Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4. J Power Sourc 119:959–963CrossRef Ariyoshi K, Yamamoto S, Ohzuku T (2003) Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4. J Power Sourc 119:959–963CrossRef
116.
go back to reference Wu HM, Belharouak I, Deng H, Abouimrane A, Sun YK, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life batteries and energy storage. J Electrochem Soc 156:A1047–A1050CrossRef Wu HM, Belharouak I, Deng H, Abouimrane A, Sun YK, Amine K (2009) Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life batteries and energy storage. J Electrochem Soc 156:A1047–A1050CrossRef
117.
go back to reference Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:516CrossRef Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:516CrossRef
118.
go back to reference Sawai K, Yamato R, Ohzuku T (2006) Impedance measurements on lithium-ion battery consisting of Li[Li1/3Ti5/3]O4 and Li(Co1/2Ni1/2)O2. Electrochim Acta 51:1651–1655CrossRef Sawai K, Yamato R, Ohzuku T (2006) Impedance measurements on lithium-ion battery consisting of Li[Li1/3Ti5/3]O4 and Li(Co1/2Ni1/2)O2. Electrochim Acta 51:1651–1655CrossRef
119.
go back to reference Lu W, Liu J, Sun YK, Amine K (2007) Electrochemical performance of Li4/3Ti5/3O4/Li1+x (Ni1/3Co1/3Mn1/3)1−x O2 cell for high power applications. J Power Sourc 167:212–216CrossRef Lu W, Liu J, Sun YK, Amine K (2007) Electrochemical performance of Li4/3Ti5/3O4/Li1+x (Ni1/3Co1/3Mn1/3)1−x O2 cell for high power applications. J Power Sourc 167:212–216CrossRef
120.
go back to reference Reddy MV, Suba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef Reddy MV, Suba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRef
121.
122.
go back to reference Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60:43–48CrossRef Daniel C (2008) Materials and processing for lithium-ion batteries. JOM 60:43–48CrossRef
123.
go back to reference Armand MB (1983) Polymer solid electrolytes – an overview. Solid State Ionics 9–10:745–754CrossRef Armand MB (1983) Polymer solid electrolytes – an overview. Solid State Ionics 9–10:745–754CrossRef
124.
go back to reference Gauthier M, Fauteux D, Vassort G, Belanger A, Duval M, Ricoux P, Gabano JP, Muller D, Rigaud P, Armand MB, Deroo D (1985) Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J Electrochem Soc 132:1333–1340CrossRef Gauthier M, Fauteux D, Vassort G, Belanger A, Duval M, Ricoux P, Gabano JP, Muller D, Rigaud P, Armand MB, Deroo D (1985) Assessment of polymer-electrolyte batteries for EV and ambient temperature applications. J Electrochem Soc 132:1333–1340CrossRef
125.
go back to reference Armand M (1985) Ionically conductive polymers. In: Sequeira CAC, Hooper A (eds) Solid state batteries. Marinus Nijhoff, Dordrecht, pp 63–72CrossRef Armand M (1985) Ionically conductive polymers. In: Sequeira CAC, Hooper A (eds) Solid state batteries. Marinus Nijhoff, Dordrecht, pp 63–72CrossRef
126.
go back to reference Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sourc 231:153–162CrossRef Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sourc 231:153–162CrossRef
127.
go back to reference Jeong SS, Lim Y, Choi YJ, Cho GB, Kim KW, Ahn HJ, Cho KK (2007) Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sourc 174:745–750CrossRef Jeong SS, Lim Y, Choi YJ, Cho GB, Kim KW, Ahn HJ, Cho KK (2007) Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions. J Power Sourc 174:745–750CrossRef
128.
go back to reference Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13:5891–5899CrossRef Song MK, Zhang Y, Cairns EJ (2013) A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. Nano Lett 13:5891–5899CrossRef
129.
go back to reference Manthiram A, Fu Y, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134CrossRef Manthiram A, Fu Y, Su YS (2013) Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 46:1125–1134CrossRef
130.
go back to reference Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506CrossRef Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8:500–506CrossRef
131.
go back to reference Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467CrossRef Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11:4462–4467CrossRef
132.
go back to reference Choi YJ, Ahn JH, Ahn HJ (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sourc 184:548–552CrossRef Choi YJ, Ahn JH, Ahn HJ (2008) Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell. J Power Sourc 184:548–552CrossRef
139.
go back to reference Hafsaoui J, Scordia J, Sellier F, Aubret P (2012) Development of an electrochemical battery model and its parameters identification tool. Int J Automobile Eng 3:27–33 Hafsaoui J, Scordia J, Sellier F, Aubret P (2012) Development of an electrochemical battery model and its parameters identification tool. Int J Automobile Eng 3:27–33
140.
go back to reference Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533CrossRef Doyle M, Fuller TF, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140:1526–1533CrossRef
141.
go back to reference Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10CrossRef Fuller TF, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141:1–10CrossRef
142.
go back to reference Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982–990CrossRef Fuller TF, Doyle M, Newman J (1994) Relaxation phenomena in lithium-ion-insertion cells. J Electrochem Soc 141:982–990CrossRef
143.
go back to reference Hageman SC (1993) Simple PSpice models let you simulate common battery types. Electronic Design News 38:117–129 Hageman SC (1993) Simple PSpice models let you simulate common battery types. Electronic Design News 38:117–129
144.
go back to reference Manwell J, McGowan J (1993) Lead acid battery storage model for hybrid energy systems. Sol Energ 50:399–405CrossRef Manwell J, McGowan J (1993) Lead acid battery storage model for hybrid energy systems. Sol Energ 50:399–405CrossRef
145.
go back to reference Chiasserini C, Rao R (2001) Energy efficient battery management. IEEE J Selected Areas Commun 19:1235–1245CrossRef Chiasserini C, Rao R (2001) Energy efficient battery management. IEEE J Selected Areas Commun 19:1235–1245CrossRef
146.
go back to reference Rao V, Singhal G, Kumar A, Navet N (2005) Battery model for embedded systems. In; Proceedings of the 18th international conference on VLSI design held jointly with 4th international conference on embedded systems design (VLSID’05) IEEE Computer Society, pp 105–110 Rao V, Singhal G, Kumar A, Navet N (2005) Battery model for embedded systems. In; Proceedings of the 18th international conference on VLSI design held jointly with 4th international conference on embedded systems design (VLSID’05) IEEE Computer Society, pp 105–110
147.
go back to reference Tremblay O, Dessaint LA, Dekkiche AI (2007) A generic battery model for the dynamic simulation of hybrid electric vehicles. In: Proceedings of the vehicle power and propulsion conference. Arlington, TX, IEEE, pp 284–289 Tremblay O, Dessaint LA, Dekkiche AI (2007) A generic battery model for the dynamic simulation of hybrid electric vehicles. In: Proceedings of the vehicle power and propulsion conference. Arlington, TX, IEEE, pp 284–289
148.
go back to reference Moore S, Merhdad E (1996) Texas A&M, an empirically based electrosource horizon lead-acid battery model, Strategies in Electric and Hybrid Vehicle Design, SAE J. SP-1156, paper 960448, pp 135–138 Moore S, Merhdad E (1996) Texas A&M, an empirically based electrosource horizon lead-acid battery model, Strategies in Electric and Hybrid Vehicle Design, SAE J. SP-1156, paper 960448, pp 135–138
149.
go back to reference Unnewehr LE, Nasar SA (1982) Electric vehicle technology. Wiley, New York, pp 81–91 Unnewehr LE, Nasar SA (1982) Electric vehicle technology. Wiley, New York, pp 81–91
150.
go back to reference Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sourc 97–98:13–21CrossRef Broussely M, Herreyre S, Biensan P, Kasztejna P, Nechev K, Staniewicz RJ (2001) Aging mechanism in Li ion cells and calendar life predictions. J Power Sourc 97–98:13–21CrossRef
Metadata
Title
Lithium Batteries
Authors
Christian Julien
Alain Mauger
Ashok Vijh
Karim Zaghib
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-19108-9_2