Skip to main content
Top

2013 | OriginalPaper | Chapter

8. Lithium Ion Batteries, Electrochemical Reactions in

Authors : Paul J. Sideris, Steve G. Greenbaum

Published in: Batteries for Sustainability

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite their spectacular success in portable electronics applications, continued technical advances of lithium-ion batteries are crucial to establishing large-scale storage applications such as electric vehicles and enabling development of renewable intermittent energy sources, i.e., wind and solar. Paramount considerations in realizing scaled-up battery systems are safety, cost, energy density, and service lifetime. Some of these applications also require rapid charge and discharge capability. To move beyond the current generation of lithium-ion batteries, it is necessary to understand some of the outstanding materials issues of the individual components (i.e., electrodes and electrolytes) as well as the battery system as a whole where the components interact under conditions of elevated temperature and electric current flow.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough J, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
2.
go back to reference Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127CrossRef
3.
go back to reference Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211CrossRef Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) Rechargeable LiNiO2/carbon cells. J Electrochem Soc 138:2207–2211CrossRef
4.
go back to reference Delmas C, Peres J, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68(1):120–125CrossRef Delmas C, Peres J, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P (1997) On the behavior of the LixNiO2 system: an electrochemical and structural overview. J Power Sources 68(1):120–125CrossRef
5.
go back to reference Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199CrossRef Saadoune I, Delmas C (1996) LiNi1–yCoyO2 positive electrode materials: relationships between the structure, physical properties and electrochemical behaviour. J Mater Chem 6(2):193–199CrossRef
6.
go back to reference Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ion 89(3–4):197–202CrossRef Capitaine F, Gravereau P, Delmas C (1996) A new variety of LiMnO2 with a layered structure. Solid State Ion 89(3–4):197–202CrossRef
7.
go back to reference Rossen E, Jones C, Dahn J (1992) Structure and electrochemistry of LixMnyNi1–yO2. Solid State Ion 57(3–4):311–318CrossRef Rossen E, Jones C, Dahn J (1992) Structure and electrochemistry of LixMnyNi1–yO2. Solid State Ion 57(3–4):311–318CrossRef
8.
go back to reference Liu Z, Yu A, Lee J (1999) Synthesis and characterization of LiNi1–x–yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 82:416–419CrossRef Liu Z, Yu A, Lee J (1999) Synthesis and characterization of LiNi1–x–yCoxMnyO2 as the cathode materials of secondary lithium batteries. J Power Sources 82:416–419CrossRef
9.
go back to reference Yoshio M, Noguchi H, Itoh J, Okada M, Mouri T (2000) Preparation and properties of LiCoyMnxNi1–x–yO2 as a cathode for lithium ion batteries. J Power Sources 90(2):176–181CrossRef Yoshio M, Noguchi H, Itoh J, Okada M, Mouri T (2000) Preparation and properties of LiCoyMnxNi1–x–yO2 as a cathode for lithium ion batteries. J Power Sources 90(2):176–181CrossRef
10.
go back to reference Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRef
11.
go back to reference Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739 (Weinheim, Germany)CrossRef Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739 (Weinheim, Germany)CrossRef
12.
go back to reference Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885CrossRef
13.
go back to reference Badway F, Cosandey F, Pereira N, Amatucci G (2003) Carbon metal fluoride nanocomposites – high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150(10):A1318–A1327CrossRef Badway F, Cosandey F, Pereira N, Amatucci G (2003) Carbon metal fluoride nanocomposites – high-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J Electrochem Soc 150(10):A1318–A1327CrossRef
14.
go back to reference Badway F, Pereira N, Cosandey F, Amatucci G (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3: C. J Electrochem Soc 150(9):A1209–A1218CrossRef Badway F, Pereira N, Cosandey F, Amatucci G (2003) Carbon-metal fluoride nanocomposites – structure and electrochemistry of FeF3: C. J Electrochem Soc 150(9):A1209–A1218CrossRef
15.
go back to reference Badway F, Mansour A, Pereira N, Al-Sharab J, Cosandey F, Plitz I, Amatucci G (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141CrossRef Badway F, Mansour A, Pereira N, Al-Sharab J, Cosandey F, Plitz I, Amatucci G (2007) Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices. Chem Mater 19(17):4129–4141CrossRef
16.
go back to reference Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319CrossRef Armand M (1994) The history of polymer electrolytes. Solid State Ion 69:309–319CrossRef
17.
18.
go back to reference Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali-metal ions with poly(ethylene oxide). Polymer 14(11):589CrossRef
19.
go back to reference Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
20.
go back to reference Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222CrossRef Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49(24):4213–4222CrossRef
21.
go back to reference Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
22.
go back to reference Proffen T, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32:572–575CrossRef Proffen T, Billinge SJL (1999) PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J Appl Crystallogr 32:572–575CrossRef
23.
go back to reference McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1:359–367CrossRef McGreevy RL, Pusztai L (1988) Reverse monte carlo simulation: a new technique for the determination of disordered structures. Mol Simul 1:359–367CrossRef
24.
go back to reference Dedryvere R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16(6):1056–1061CrossRef Dedryvere R, Laruelle S, Grugeon S, Poizot P, Gonbeau D, Tarascon JM (2004) Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium. Chem Mater 16(6):1056–1061CrossRef
25.
go back to reference Alamgir FM, Petersburg CF, Daniel RC, Jaye C, Fischer DA (2009) Soft X-ray characterization technique for Li batteries under operating conditions. J Synchrotron Radiat 16:610–615CrossRef Alamgir FM, Petersburg CF, Daniel RC, Jaye C, Fischer DA (2009) Soft X-ray characterization technique for Li batteries under operating conditions. J Synchrotron Radiat 16:610–615CrossRef
26.
go back to reference Stern EA (1974) Theory of extended X-Ray-absorption fine-structure. Phys Rev B 10(8):3027–3037CrossRef Stern EA (1974) Theory of extended X-Ray-absorption fine-structure. Phys Rev B 10(8):3027–3037CrossRef
27.
go back to reference Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures – Fourier analysis of extended X-ray – absorption fine structure. Phys Rev Lett 27(18):1204–1207CrossRef Sayers DE, Stern EA, Lytle FW (1971) New technique for investigating noncrystalline structures – Fourier analysis of extended X-ray – absorption fine structure. Phys Rev Lett 27(18):1204–1207CrossRef
28.
go back to reference Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17(12):3191–3199CrossRef Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF (2005) In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. Chem Mater 17(12):3191–3199CrossRef
29.
go back to reference Yoon W, Kim N, Yang X, McBreen J, Grey C (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRef Yoon W, Kim N, Yang X, McBreen J, Grey C (2003) Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides. J Power Sources 119:649–653CrossRef
30.
go back to reference Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5(6):883–894CrossRef Grey CP, Lee YJ (2003) Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci 5(6):883–894CrossRef
31.
go back to reference Carlier D, Menetrier M, Grey C, Delmas C, Ceder G (2003) Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B 67 174103:1–14 Carlier D, Menetrier M, Grey C, Delmas C, Ceder G (2003) Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B 67 174103:1–14
32.
go back to reference Letellier M, Chevallier F, Beguin F, Frackowiak E, Rouzaud J (2004) The first in situ Li-7 NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65(2–3):245–251CrossRef Letellier M, Chevallier F, Beguin F, Frackowiak E, Rouzaud J (2004) The first in situ Li-7 NMR study of the reversible lithium insertion mechanism in disorganised carbons. J Phys Chem Solids 65(2–3):245–251CrossRef
33.
go back to reference Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York
34.
go back to reference Slichter CP (1990) Principles of nuclear magnetic resonance. Springer, Berlin Slichter CP (1990) Principles of nuclear magnetic resonance. Springer, Berlin
35.
go back to reference Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRef
36.
go back to reference Kimmich R, Unrath W, Schnur G, Rommel E (1991) NMR measurement of small self-diffusion coefficients in the fringe-field of superconducting magnets. J Magn Reson 91(1):136–140 Kimmich R, Unrath W, Schnur G, Rommel E (1991) NMR measurement of small self-diffusion coefficients in the fringe-field of superconducting magnets. J Magn Reson 91(1):136–140
37.
go back to reference Demco D, Johansson A, Tegenfeldt J (1994) Constant-relaxation methods for diffusion measurements in the fringe-field of superconducting magnets. J Magn Reson Ser A 110(2):183–193CrossRef Demco D, Johansson A, Tegenfeldt J (1994) Constant-relaxation methods for diffusion measurements in the fringe-field of superconducting magnets. J Magn Reson Ser A 110(2):183–193CrossRef
38.
go back to reference Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Cond Matter 7(34):6823–6832CrossRef Gorecki W, Jeannin M, Belorizky E, Roux C, Armand M (1995) Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes. J Phys Cond Matter 7(34):6823–6832CrossRef
39.
go back to reference Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li(CF3SO3)PEG(10) and LiN(CF3SO2)(2)PEG(10). Polymer 37(8):1387–1393CrossRef Johansson A, Gogoll A, Tegenfeldt J (1996) Diffusion and ionic conductivity in Li(CF3SO3)PEG(10) and LiN(CF3SO2)(2)PEG(10). Polymer 37(8):1387–1393CrossRef
40.
go back to reference Hayamizu K, Aihara Y, Price W (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO2CF3)(2). J Chem Phys 113(11):4785–4793CrossRef Hayamizu K, Aihara Y, Price W (2000) Correlating the NMR self-diffusion and relaxation measurements with ionic conductivity in polymer electrolytes composed of cross-linked poly(ethylene oxide-propylene oxide) doped with LiN(SO2CF3)(2). J Chem Phys 113(11):4785–4793CrossRef
41.
go back to reference Hayamizu K, Aihara Y, Price W (2001) NMR and ion conductivity studies on cross-linked poly(ethyleneoxide-propyleneoxide) and branched polyether doped with LiN(SO2CF3)(2). Electrochim Acta 46(10–11):1475–1485CrossRef Hayamizu K, Aihara Y, Price W (2001) NMR and ion conductivity studies on cross-linked poly(ethyleneoxide-propyleneoxide) and branched polyether doped with LiN(SO2CF3)(2). Electrochim Acta 46(10–11):1475–1485CrossRef
42.
go back to reference Adebahr J, Forsyth M, Gavelin P, Jacobsson P, Oradd G (2002) Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers. J Phys Chem B 106(47):12119–12123CrossRef Adebahr J, Forsyth M, Gavelin P, Jacobsson P, Oradd G (2002) Ion and solvent dynamics in gel electrolytes based on ethylene oxide grafted acrylate polymers. J Phys Chem B 106(47):12119–12123CrossRef
43.
go back to reference Gorecki W, Roux C, Clemancey M, Armand M, Belorizky E (2002) NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n + 1)(SO2CmF2m + 1)]. Chemphyschem 3(7):620–625CrossRef Gorecki W, Roux C, Clemancey M, Armand M, Belorizky E (2002) NMR and conductivity study of polymer electrolytes in the imide family: P(EO)/Li[N(SO2CnF2n + 1)(SO2CmF2m + 1)]. Chemphyschem 3(7):620–625CrossRef
44.
go back to reference Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRef Croce F, Appetecchi G, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458CrossRef
45.
go back to reference Zhou F, MacFarlane D, Forsyth M (2003) Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochim Acta 48(12):1749–1758CrossRef Zhou F, MacFarlane D, Forsyth M (2003) Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochim Acta 48(12):1749–1758CrossRef
46.
go back to reference Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S, Rodriguez T, Greenbaum S, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochimia Acta 50(19):3942–3948CrossRef Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S, Rodriguez T, Greenbaum S, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochimia Acta 50(19):3942–3948CrossRef
47.
go back to reference Koudriachova MV, Harrison NM, de Leeuw SW (2002) Density-functional simulations of lithium intercalation in rutile. Phys Rev B 65 235423:1–12 Koudriachova MV, Harrison NM, de Leeuw SW (2002) Density-functional simulations of lithium intercalation in rutile. Phys Rev B 65 235423:1–12
48.
go back to reference Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74 094105:1–7 Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74 094105:1–7
49.
go back to reference Tibbetts K, Miranda CR, Meng YS, Ceder G (2007) An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem Mater 19(22):5302–5308CrossRef Tibbetts K, Miranda CR, Meng YS, Ceder G (2007) An ab initio study of lithium diffusion in titanium disulfide nanotubes. Chem Mater 19(22):5302–5308CrossRef
50.
go back to reference Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365CrossRef Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56(3):1354–1365CrossRef
51.
go back to reference Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58(23):15583–15588CrossRef Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58(23):15583–15588CrossRef
52.
go back to reference Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G (2004) Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc 151(8):A1134–A1140CrossRef Meng YS, Wu YW, Hwang BJ, Li Y, Ceder G (2004) Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries: LiNi1/3Fe1/6Co1/6Mn1/3O2. J Electrochem Soc 151(8):A1134–A1140CrossRef
53.
go back to reference Arroyo-DeDompablo ME, Van der Ven A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys Rev B 66 064112:1–9 Arroyo-DeDompablo ME, Van der Ven A, Ceder G (2002) First-principles calculations of lithium ordering and phase stability on LixNiO2. Phys Rev B 66 064112:1–9
54.
go back to reference Wolverton C, Zunger A (1998) Prediction of Li intercalation and battery voltages in layered versus cubic LixCoO2. J Electrochem Soc 145(7):2424–2431CrossRef Wolverton C, Zunger A (1998) Prediction of Li intercalation and battery voltages in layered versus cubic LixCoO2. J Electrochem Soc 145(7):2424–2431CrossRef
55.
go back to reference Hwang B, Tsai Y, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682CrossRef Hwang B, Tsai Y, Carlier D, Ceder G (2003) A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2. Chem Mater 15(19):3676–3682CrossRef
56.
go back to reference Kganyago KR, Ngoepe PE, Catlow CRA (2003) Ab initio calculation of the voltage profile for LiC6. Solid State Ion 159(1–2):21–23CrossRef Kganyago KR, Ngoepe PE, Catlow CRA (2003) Ab initio calculation of the voltage profile for LiC6. Solid State Ion 159(1–2):21–23CrossRef
57.
go back to reference Launay M, Boucher F, Gressier P, Ouvrard G (2003) A DFT study of lithium battery materials: application to the β-VOXO4 systems (X = P, As, S). J Solid State Chem 176(2):556–566CrossRef Launay M, Boucher F, Gressier P, Ouvrard G (2003) A DFT study of lithium battery materials: application to the β-VOXO4 systems (X = P, As, S). J Solid State Chem 176(2):556–566CrossRef
58.
go back to reference Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70 235121:1–8 Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G (2004) First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys Rev B 70 235121:1–8
59.
go back to reference Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O-2. Electrochem State Lett 5(7):A145–A148CrossRef Reed J, Ceder G (2002) Charge, potential, and phase stability of layered Li(Ni0.5Mn0.5)O-2. Electrochem State Lett 5(7):A145–A148CrossRef
60.
go back to reference Arroyo-DeDompablo ME, Ceder G (2003) First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J Power Sources 119121:654–657CrossRef Arroyo-DeDompablo ME, Ceder G (2003) First-principles calculations on LixNiO2: phase stability and monoclinic distortion. J Power Sources 119121:654–657CrossRef
61.
go back to reference Carlier D, Van der Ven A, Delmas C, Ceder G (2003) First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem Mater 15(13):2651–2660CrossRef Carlier D, Van der Ven A, Delmas C, Ceder G (2003) First-principles investigation of phase stability in the O-2-LiCoO2 system. Chem Mater 15(13):2651–2660CrossRef
62.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRef
63.
go back to reference Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRef
64.
go back to reference Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef Kresse G, Joubert J (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRef
65.
go back to reference Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef Kresse G, Furthmuller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRef
66.
go back to reference Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3):824–832CrossRef Bar-Tow D, Peled E, Burstein L (1999) A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3):824–832CrossRef
67.
go back to reference Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57CrossRef Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57CrossRef
68.
go back to reference Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546CrossRef Lu M, Cheng H, Yang Y (2008) A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells. Electrochim Acta 53(9):3539–3546CrossRef
69.
go back to reference Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395CrossRef Peled E, Golodnitsky D, Ulus A, Yufit V (2004) Effect of carbon substrate on SEI composition and morphology. Electrochim Acta 50(2–3):391–395CrossRef
70.
go back to reference Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in non-flammable electrolyte. J Power Sources 119:393–398CrossRef Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in non-flammable electrolyte. J Power Sources 119:393–398CrossRef
71.
go back to reference Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148(10):A1100–A1109CrossRef Andersson AM, Edstrom K (2001) Chemical composition and morphology of the elevated temperature SEI on graphite. J Electrochem Soc 148(10):A1100–A1109CrossRef
72.
go back to reference Andersson AM, Edstrom K, Rao N, Wendsjo A (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 82:286–290CrossRef Andersson AM, Edstrom K, Rao N, Wendsjo A (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 82:286–290CrossRef
73.
go back to reference Meyer BM, Leifer N, Sakamoto S, Greenbaum SG, Grey CP (2005) High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid State Lett 8(3):A145–A148CrossRef Meyer BM, Leifer N, Sakamoto S, Greenbaum SG, Grey CP (2005) High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries. Electrochem Solid State Lett 8(3):A145–A148CrossRef
74.
go back to reference Dupre N, Martin JF, Degryse J, Fernandez V, Soudan P, Guyomard D (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195(21):7415–7425CrossRef Dupre N, Martin JF, Degryse J, Fernandez V, Soudan P, Guyomard D (2010) Aging of the LiFePO4 positive electrode interface in electrolyte. J Power Sources 195(21):7415–7425CrossRef
75.
go back to reference Dupre N, Martin J, Oliveri J, Soudan P, Guyomard D, Yamada A, Kanno R (2009) Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J Electrochem Soc 156(5):C180–C185CrossRef Dupre N, Martin J, Oliveri J, Soudan P, Guyomard D, Yamada A, Kanno R (2009) Aging of the LiNi1/2Mn1/2O2 positive electrode interface in electrolyte. J Electrochem Soc 156(5):C180–C185CrossRef
76.
go back to reference Dupre N, Martin JF, Guyomard D, Yamada A, Kanno R (2008) Detection of surface layers using Li-7 MAS NMR. J Mater Chem 18(36):4266–4273CrossRef Dupre N, Martin JF, Guyomard D, Yamada A, Kanno R (2008) Detection of surface layers using Li-7 MAS NMR. J Mater Chem 18(36):4266–4273CrossRef
77.
go back to reference Leifer N, Smart MC, Prakash GKS, Gonzalez L, Sanchez L, Smith KA, Bhalla P, Grey CP, Greenbaum SG (2011) 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc 158(5):A471–A480CrossRef Leifer N, Smart MC, Prakash GKS, Gonzalez L, Sanchez L, Smith KA, Bhalla P, Grey CP, Greenbaum SG (2011) 13C solid state NMR suggests unusual breakdown products in SEI formation on lithium ion electrodes. J Electrochem Soc 158(5):A471–A480CrossRef
78.
go back to reference Fernicola A, Weise F, Greenbaum S, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520CrossRef Fernicola A, Weise F, Greenbaum S, Kagimoto J, Scrosati B, Soleto A (2009) Lithium-ion-conducting electrolytes: from an ionic liquid to the polymer membrane. J Electrochem Soc 156(7):A514–A520CrossRef
79.
go back to reference Scrosati B (1995) Battery technology – challenge of portable power. Nature 373:557–558CrossRef Scrosati B (1995) Battery technology – challenge of portable power. Nature 373:557–558CrossRef
80.
go back to reference Gray FM (1991) Solid polymer electrolytes: fundamentals and electrochemical applications. VCH, New York Gray FM (1991) Solid polymer electrolytes: fundamentals and electrochemical applications. VCH, New York
81.
go back to reference Kalita M, Bukat M, Ciosek M, Siekierski M, Chung SH, Rodriguez T, Greenbaum SG, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 50(19):3942–3948CrossRef Kalita M, Bukat M, Ciosek M, Siekierski M, Chung SH, Rodriguez T, Greenbaum SG, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W (2005) Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes. Electrochim Acta 50(19):3942–3948CrossRef
82.
go back to reference Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273CrossRef Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273CrossRef
83.
go back to reference Pawlowska A, Zukowska G, Kalita M, Solgala A, Parzuchowski P, Siekierski M (2007) The effect of receptor-polymer matrix compatibility on properties of PEO-based polymer electrolytes containing a supramolecular additive. Part 1. Studies on phenomenon of compatibility. J Power Sources 173(2):755–764CrossRef Pawlowska A, Zukowska G, Kalita M, Solgala A, Parzuchowski P, Siekierski M (2007) The effect of receptor-polymer matrix compatibility on properties of PEO-based polymer electrolytes containing a supramolecular additive. Part 1. Studies on phenomenon of compatibility. J Power Sources 173(2):755–764CrossRef
84.
go back to reference Bloise A, Donoso J, Magon C, Rosario A, Pereira E (2003) NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim Acta 48(14–16):2239–2246CrossRef Bloise A, Donoso J, Magon C, Rosario A, Pereira E (2003) NMR and conductivity study of PEO-based composite polymer electrolytes. Electrochim Acta 48(14–16):2239–2246CrossRef
85.
go back to reference Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Study on ionic conductivity of polymer electrolyte plasticized with PEG-aluminate ester for rechargeable lithium ion battery. Solid State Ion 117(9–10):843–846CrossRef Masuda Y, Seki M, Nakayama M, Wakihara M, Mita H (2006) Study on ionic conductivity of polymer electrolyte plasticized with PEG-aluminate ester for rechargeable lithium ion battery. Solid State Ion 117(9–10):843–846CrossRef
86.
go back to reference Dai Y, Wang Y, Greenbaum S, Bajue S, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef Dai Y, Wang Y, Greenbaum S, Bajue S, Golodnitsky D, Ardel G, Strauss E, Peled E (1998) Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim Acta 43(10–11):1557–1561CrossRef
87.
go back to reference Best A, Adebahr J, Jacobsson P, MacFarlane D, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34(13):4549–4555CrossRef Best A, Adebahr J, Jacobsson P, MacFarlane D, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34(13):4549–4555CrossRef
88.
go back to reference Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Phys Chem Chem Phys 5:720–725CrossRef Adebahr J, Best A, Byrne N, Jacobsson P, MacFarlane D, Forsyth M (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Phys Chem Chem Phys 5:720–725CrossRef
89.
go back to reference Berthier C, Gorecki W, Minier M, Armand M, Chabagno J, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95CrossRef Berthier C, Gorecki W, Minier M, Armand M, Chabagno J, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95CrossRef
90.
go back to reference Chung S, Jeffrey K, Stevens J (1991) A Li-7 nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene-glycol). J Chem Phys 94(3):1803–1811CrossRef Chung S, Jeffrey K, Stevens J (1991) A Li-7 nuclear magnetic resonance study of LiCF3SO3 complexed in poly(propylene-glycol). J Chem Phys 94(3):1803–1811CrossRef
91.
go back to reference Donoso J, Bonagamba T, Panepucci H, Oliveira L, Gorecki W, Berthier C, Armand M (1993) Nuclear magnetic relaxation study of poly(ethylene oxide)-lithium salt based electrolytes. J Chem Phys 98(12):10026–10036CrossRef Donoso J, Bonagamba T, Panepucci H, Oliveira L, Gorecki W, Berthier C, Armand M (1993) Nuclear magnetic relaxation study of poly(ethylene oxide)-lithium salt based electrolytes. J Chem Phys 98(12):10026–10036CrossRef
92.
go back to reference Johansson A, Tegenfeldt J (1996) Segmental mobility in complexes of Pb(CF3SO3)(2) and poly(ethylene oxide) studied by NMR spectroscopy. J Chem Phys 104(13):5317–5325CrossRef Johansson A, Tegenfeldt J (1996) Segmental mobility in complexes of Pb(CF3SO3)(2) and poly(ethylene oxide) studied by NMR spectroscopy. J Chem Phys 104(13):5317–5325CrossRef
93.
go back to reference Chung S, Wang Y, Greenbaum S, Golodnitsky D, Peled E (1999) Uniaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film – a Li-7 nuclear magnetic resonance study. Electrochem Solid State Lett 2(11):553–555CrossRef Chung S, Wang Y, Greenbaum S, Golodnitsky D, Peled E (1999) Uniaxial stress effects in poly(ethylene oxide)-LiI polymer electrolyte film – a Li-7 nuclear magnetic resonance study. Electrochem Solid State Lett 2(11):553–555CrossRef
94.
go back to reference Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung S, Suarez S, Greenbaum S (2004) New generation of ordered polymer electrolytes for lithium batteries. Electrochem Solid State Lett 7(11):A412–A415CrossRef Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung S, Suarez S, Greenbaum S (2004) New generation of ordered polymer electrolytes for lithium batteries. Electrochem Solid State Lett 7(11):A412–A415CrossRef
95.
go back to reference Golodnitsky D, Livshits E, Ulus A, Barkay Z, Lapides I, Peled E, Chung S, Greenbaum S (2001) Fast ion transport phenomena in oriented semicrystalline LiI-P(EO)n-based polymer electrolytes. J Phys Chem A 105(44):10098–10106CrossRef Golodnitsky D, Livshits E, Ulus A, Barkay Z, Lapides I, Peled E, Chung S, Greenbaum S (2001) Fast ion transport phenomena in oriented semicrystalline LiI-P(EO)n-based polymer electrolytes. J Phys Chem A 105(44):10098–10106CrossRef
96.
go back to reference Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, New York Armand MB, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, New York
97.
go back to reference Gadjourova Z, Andreev Y, Tunstall D, Bruce P (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523CrossRef Gadjourova Z, Andreev Y, Tunstall D, Bruce P (2001) Ionic conductivity in crystalline polymer electrolytes. Nature 412:520–523CrossRef
98.
go back to reference Padhi A, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef Padhi A, Nanjundaswamy K, Goodenough J (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRef
99.
go back to reference Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32CrossRef Morgan D, Van der Ven A, Ceder G (2004) Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem Solid State Lett 7(2):A30–A32CrossRef
100.
go back to reference Yamada A, Chung S, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRef Yamada A, Chung S, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148(3):A224–A229CrossRef
101.
go back to reference Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613CrossRef Padhi A, Nanjundaswamy K, Masquelier C, Okada S, Goodenough J (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144(5):1609–1613CrossRef
102.
go back to reference Tucker M, Doeff M, Richardson T, Finones R, Cairns E, Reimer J (2002) Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a Li-7 MAS NMR and SQUID study. J Am Chem Soc 124(15):3832–3833CrossRef Tucker M, Doeff M, Richardson T, Finones R, Cairns E, Reimer J (2002) Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a Li-7 MAS NMR and SQUID study. J Am Chem Soc 124(15):3832–3833CrossRef
103.
go back to reference Gee B, Horne CR, Cairns EJ, Reimer JA (1998) Supertransferred hyperfine fields at Li-7: Variable temperature Li-7 NMR studies of LiMn2O4-based spinels. J Phys Chem B 102(50):10142–10149CrossRef Gee B, Horne CR, Cairns EJ, Reimer JA (1998) Supertransferred hyperfine fields at Li-7: Variable temperature Li-7 NMR studies of LiMn2O4-based spinels. J Phys Chem B 102(50):10142–10149CrossRef
104.
go back to reference Wilcke SL, Lee YJ, Cairns EJ, Reimer JA (2007) Covalency measurements via NMR in lithium metal phosphates. Appl Magn Reson 32(4):547–563CrossRef Wilcke SL, Lee YJ, Cairns EJ, Reimer JA (2007) Covalency measurements via NMR in lithium metal phosphates. Appl Magn Reson 32(4):547–563CrossRef
105.
go back to reference Leifer N, Colon A, Martocci K, Greenbaum S, Alamgir F, Reddy T, Gleason N, Leising R, Takeuchi E (2007) Nuclear magnetic resonance and X-ray absorption spectroscopic studies of lithium insertion in silver vanadium oxide cathodes. J Electrochem Soc 154(6):A500–A506CrossRef Leifer N, Colon A, Martocci K, Greenbaum S, Alamgir F, Reddy T, Gleason N, Leising R, Takeuchi E (2007) Nuclear magnetic resonance and X-ray absorption spectroscopic studies of lithium insertion in silver vanadium oxide cathodes. J Electrochem Soc 154(6):A500–A506CrossRef
106.
go back to reference Crespi A, Skarstad P, Zandbergen H (1995) Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy. J Power Sources 54(1):68–71CrossRef Crespi A, Skarstad P, Zandbergen H (1995) Characterization of silver vanadium oxide cathode material by high-resolution electron microscopy. J Power Sources 54(1):68–71CrossRef
107.
go back to reference Takeuchi K, Marschilok A, Davis S, Leising R, Takeuchi E (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219–221:283–310CrossRef Takeuchi K, Marschilok A, Davis S, Leising R, Takeuchi E (2001) Silver vanadium oxides and related battery applications. Coord Chem Rev 219–221:283–310CrossRef
108.
go back to reference Ramasamy R, Feger C, Strange T, Popov B (2006) Discharge characteristics of silver vanadium oxide cathodes. J Appl Electrochem 36(4):487–497CrossRef Ramasamy R, Feger C, Strange T, Popov B (2006) Discharge characteristics of silver vanadium oxide cathodes. J Appl Electrochem 36(4):487–497CrossRef
109.
go back to reference Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li-7 MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x = 10, 12 and 14). Solid State Ion 167(1–2):41–47CrossRef Vijayakumar M, Selvasekarapandian S, Nakamura K, Kanashiro T, Kesavamoorthy R (2004) Li-7 MAS-NMR and vibrational spectroscopic investigations of LixV2O5 (x = 10, 12 and 14). Solid State Ion 167(1–2):41–47CrossRef
110.
go back to reference Holland G, Buttry D, Yarger J (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14(9):3875–3881CrossRef Holland G, Buttry D, Yarger J (2002) Li-7 NMR studies of electrochemically lithiated V2O5 xerogels. Chem Mater 14(9):3875–3881CrossRef
111.
go back to reference Holland G, Yarger J, Buttry D, Huguenin F, Torresi R (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150(12):A1718–A1722CrossRef Holland G, Yarger J, Buttry D, Huguenin F, Torresi R (2003) Solid-state NMR study of ion-exchange processes in V2O5 xerogel, polyaniline/V2O5, and sulfonated polyaniline/V2O5 nanocomposites. J Electrochem Soc 150(12):A1718–A1722CrossRef
112.
go back to reference Nakamura K, Nishioka D, Michihiro Y, Vijayakumar M, Selvasekarapandian S, Kanashiro T (2006) Li-7 and V-51 NMR study on Li+ ionic diffusion in lithium intercalated LixV2O5. Solid State Ion 177(1–2):129–135CrossRef Nakamura K, Nishioka D, Michihiro Y, Vijayakumar M, Selvasekarapandian S, Kanashiro T (2006) Li-7 and V-51 NMR study on Li+ ionic diffusion in lithium intercalated LixV2O5. Solid State Ion 177(1–2):129–135CrossRef
113.
go back to reference West K, Crespi A (1995) Lithium insertion into silver vanadium-oxide, Ag2V4O11. J Power Sources 54(2):334–337CrossRef West K, Crespi A (1995) Lithium insertion into silver vanadium-oxide, Ag2V4O11. J Power Sources 54(2):334–337CrossRef
114.
go back to reference Rozier P, Galy J (1997) Ag1.2V3O8 crystal structure: Relationship with Ag2V4O11–y interpretation of physical properties. J Solid State Chem 134(2):294–301CrossRef Rozier P, Galy J (1997) Ag1.2V3O8 crystal structure: Relationship with Ag2V4O11–y interpretation of physical properties. J Solid State Chem 134(2):294–301CrossRef
115.
go back to reference Rozier P, Savariault J, Galy J, Marichal C, Hirschinger J, Granger P (1996) Epsilon-LixV2O5 bronzes (0.33 ≤ × ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur J Solid State Inorg Chem 33(1):1–13 Rozier P, Savariault J, Galy J, Marichal C, Hirschinger J, Granger P (1996) Epsilon-LixV2O5 bronzes (0.33 ≤ × ≤ 0.64) a joint study by X-ray powder diffraction and 6Li, 7Li MAS NMR. Eur J Solid State Inorg Chem 33(1):1–13
116.
go back to reference Kuwabara K, Itoh M, Sugiyama K (1986) Ionic-electronic mixed conduction in LixV2O5. Solid State Ion 20(2):135–139CrossRef Kuwabara K, Itoh M, Sugiyama K (1986) Ionic-electronic mixed conduction in LixV2O5. Solid State Ion 20(2):135–139CrossRef
117.
go back to reference Garcia-Alvarado F, Tarascon J (1994) Lithium intercalation in Ag2V4O11. Solid State Ion 73(3–4):247–254CrossRef Garcia-Alvarado F, Tarascon J (1994) Lithium intercalation in Ag2V4O11. Solid State Ion 73(3–4):247–254CrossRef
118.
go back to reference Stallworth P, Kostov S, denBoer M, Greenbaum S, Lampe-Onnerud C (1998) X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. J Appl Phys 83(3):1247–1255CrossRef Stallworth P, Kostov S, denBoer M, Greenbaum S, Lampe-Onnerud C (1998) X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. J Appl Phys 83(3):1247–1255CrossRef
119.
go back to reference Yamakawa N, Jiang M, Grey CP (2009) Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 21(14):3162–3176CrossRef Yamakawa N, Jiang M, Grey CP (2009) Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction. Chem Mater 21(14):3162–3176CrossRef
120.
go back to reference Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131(30):10525–10536CrossRef Yamakawa N, Jiang M, Key B, Grey CP (2009) Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study. J Am Chem Soc 131(30):10525–10536CrossRef
121.
go back to reference Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108(1–2):226–231CrossRef Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108(1–2):226–231CrossRef
122.
go back to reference Debart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651CrossRef Debart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651CrossRef
123.
go back to reference Ikeda H, Narukawa S (1983) Behavior of various cathode materials for non-aqueous lithium cells. J Power Sources 9(3–4):329–334CrossRef Ikeda H, Narukawa S (1983) Behavior of various cathode materials for non-aqueous lithium cells. J Power Sources 9(3–4):329–334CrossRef
124.
go back to reference Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292CrossRef Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292CrossRef
125.
go back to reference Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68(2):716–719CrossRef Arai H, Okada S, Sakurai Y, Yamaki J (1997) Cathode performance and voltage estimation of metal trihalides. J Power Sources 68(2):716–719CrossRef
126.
go back to reference Cosandey F, Al-Sharab J, Badway F, Amatucci G, Stadelmann P (2007) EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc Microanal 13(2):87–95CrossRef Cosandey F, Al-Sharab J, Badway F, Amatucci G, Stadelmann P (2007) EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries. Microsc Microanal 13(2):87–95CrossRef
127.
go back to reference Doe R, Persson K, Meng Y, Ceder G (2008) First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20(16):5274–5283CrossRef Doe R, Persson K, Meng Y, Ceder G (2008) First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem Mater 20(16):5274–5283CrossRef
128.
go back to reference Nielsen U, Paik Y, Julmis K, Schoonen M, Reeder R, Grey C (2005) Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A Li-6 MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315CrossRef Nielsen U, Paik Y, Julmis K, Schoonen M, Reeder R, Grey C (2005) Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A Li-6 MAS NMR study of adsorption and absorption on goethite. J Phys Chem B 109(39):18310–18315CrossRef
129.
go back to reference Kim J, Nielsen U, Grey C (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A H-2 and Li-7 solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295CrossRef Kim J, Nielsen U, Grey C (2008) Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A H-2 and Li-7 solid-state MAS NMR study. J Am Chem Soc 130(4):1285–1295CrossRef
130.
go back to reference Liao P, MacDonald B, Dunlap R, Dahn J (2008) Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem Mater 20(2):454–461CrossRef Liao P, MacDonald B, Dunlap R, Dahn J (2008) Combinatorially prepared [LiF](1-x)Fe-x nanocomposites for positive electrode materials in Li-ion batteries. Chem Mater 20(2):454–461CrossRef
131.
go back to reference Breger J, Dupre N, Chupas P, Lee P, Proffen T, Parise J, Grey C (2005) Short- and long-range order in the positive electrode material, Li(NiMn)(0.5)O-2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc 127(20):7529–7537CrossRef Breger J, Dupre N, Chupas P, Lee P, Proffen T, Parise J, Grey C (2005) Short- and long-range order in the positive electrode material, Li(NiMn)(0.5)O-2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study. J Am Chem Soc 127(20):7529–7537CrossRef
132.
go back to reference Yoon W, Paik Y, Yang X, Balasubramanian M, McBreen J, Grey C (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5(11):A263–A266CrossRef Yoon W, Paik Y, Yang X, Balasubramanian M, McBreen J, Grey C (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid State Lett 5(11):A263–A266CrossRef
133.
go back to reference Yoon W, Iannopollo S, Grey C, Carlier D, Gorman J, Reed J, Ceder G (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O−2 – NMR studies and first principles calculations. Electrochem Solid State Lett 7(7):A167–A171CrossRef Yoon W, Iannopollo S, Grey C, Carlier D, Gorman J, Reed J, Ceder G (2004) Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2–x)/3Li(1–2x)/3]O−2 – NMR studies and first principles calculations. Electrochem Solid State Lett 7(7):A167–A171CrossRef
134.
go back to reference Van der Ven A, Ceder G (2004) Ordering in Li−x(Ni0.5Mn0.5)O–2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6(10):1045–1050CrossRef Van der Ven A, Ceder G (2004) Ordering in Li−x(Ni0.5Mn0.5)O–2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem Commun 6(10):1045–1050CrossRef
135.
go back to reference Meng YS, Ceder G, Grey CP, Yoon W-S, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid State Lett 7(6):A155–A158CrossRef Meng YS, Ceder G, Grey CP, Yoon W-S, Shao-Horn Y (2004) Understanding the crystal structure of layered LiNi0.5Mn0.5O2 by electron diffraction and powder diffraction simulation. Electrochem Solid State Lett 7(6):A155–A158CrossRef
136.
go back to reference Cahill LS, Chapman RP, Britten JF, Goward GR (2006) Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)(3). J Phys Chem B 110(14):7171–7177CrossRef Cahill LS, Chapman RP, Britten JF, Goward GR (2006) Li-7 NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)(3). J Phys Chem B 110(14):7171–7177CrossRef
137.
go back to reference Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462CrossRef Matsumura Y, Wang S, Mondori J (1995) Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon 33(10):1457–1462CrossRef
138.
go back to reference Wang S, Kakumoto T, Matsui H, Matsumura Y (1999) Mechanism of lithium insertion into disordered carbon. Synth Met 103(1–3):2523–2524CrossRef Wang S, Kakumoto T, Matsui H, Matsumura Y (1999) Mechanism of lithium insertion into disordered carbon. Synth Met 103(1–3):2523–2524CrossRef
139.
go back to reference Nakagawa Y, Wang S, Matsumura Y, Yamaguchi C (1997) Li-7-NMR study of lithium charged in carbon electrode. Synth Met 85(1–3):1363–1364CrossRef Nakagawa Y, Wang S, Matsumura Y, Yamaguchi C (1997) Li-7-NMR study of lithium charged in carbon electrode. Synth Met 85(1–3):1363–1364CrossRef
140.
go back to reference Conard J, Estrade H (1977) Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng 31:173–176CrossRef Conard J, Estrade H (1977) Résonance magnétique nucléaire du lithium interstitiel dans le graphite. Mater Sci Eng 31:173–176CrossRef
141.
go back to reference Peled E, Menachem C, BarTow D, Melman A (1996) Improved graphite anode for lithium-ion batteries – chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7CrossRef Peled E, Menachem C, BarTow D, Melman A (1996) Improved graphite anode for lithium-ion batteries – chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143(1):L4–L7CrossRef
142.
go back to reference Menachem C, Wang Y, Flowers J, Peled E, Greenbaum S (1998) Characterization of lithiated natural graphite before and after mild oxidation. J Power Sources 76(2):180–185CrossRef Menachem C, Wang Y, Flowers J, Peled E, Greenbaum S (1998) Characterization of lithiated natural graphite before and after mild oxidation. J Power Sources 76(2):180–185CrossRef
143.
go back to reference Wang Y, Yufit V, Guo X, Peled E, Greenbaum S (2001) Li-7 nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite. J Power Sources 94(2):230–237CrossRef Wang Y, Yufit V, Guo X, Peled E, Greenbaum S (2001) Li-7 nuclear magnetic resonance study of lithium insertion in pristine and partially oxidized graphite. J Power Sources 94(2):230–237CrossRef
144.
go back to reference Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by Li-7 NMR. J Power Sources 162(2):1322–1328CrossRef Gotoh K, Maeda M, Nagai A, Goto A, Tansho M, Hashi K, Shimizu T, Ishida H (2006) Properties of a novel hard-carbon optimized to large size Li ion secondary battery studied by Li-7 NMR. J Power Sources 162(2):1322–1328CrossRef
145.
go back to reference Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180CrossRef Persson K, Sethuraman VA, Hardwick LJ, Hinuma Y, Meng YS, van der Ven A, Srinivasan V, Kostecki R, Ceder G (2010) Lithium diffusion in graphitic carbon. J Phys Chem Lett 1(8):1176–1180CrossRef
146.
go back to reference Gerald RE, Klingler RJ, Sandi G, Johnson CS, Scanlon LG, Rathke JW (2000) Li-7 NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89(2):237–243CrossRef Gerald RE, Klingler RJ, Sandi G, Johnson CS, Scanlon LG, Rathke JW (2000) Li-7 NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89(2):237–243CrossRef
147.
go back to reference Chevallier F, Letellier M, Morcrette M, Tarascon JM, Frackowiak E, Rouzaud JN, Beguin F (2003) In situ Li-7-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid State Lett 6(11):A225–A228CrossRef Chevallier F, Letellier M, Morcrette M, Tarascon JM, Frackowiak E, Rouzaud JN, Beguin F (2003) In situ Li-7-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid State Lett 6(11):A225–A228CrossRef
148.
go back to reference Letellier M, Chevallier F, Clinard C, Frackowiak E, Rouzaud JN, Beguin F, Morcrette M, Tarascon JM (2003) The first in situ Li-7 nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys 118(13):6038–6045CrossRef Letellier M, Chevallier F, Clinard C, Frackowiak E, Rouzaud JN, Beguin F, Morcrette M, Tarascon JM (2003) The first in situ Li-7 nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J Chem Phys 118(13):6038–6045CrossRef
149.
go back to reference Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon JM, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249CrossRef Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon JM, Grey CP (2009) Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131(26):9239–9249CrossRef
150.
go back to reference Nesper R (1990) Structure and chemical bonding in zintl-phases containing Lithium. Prog Solid State Chem 20(1):1–45CrossRef Nesper R (1990) Structure and chemical bonding in zintl-phases containing Lithium. Prog Solid State Chem 20(1):1–45CrossRef
go back to reference Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, LondonCrossRef Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid electrolyte interphase. Imperial College Press, LondonCrossRef
go back to reference Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York
Metadata
Title
Lithium Ion Batteries, Electrochemical Reactions in
Authors
Paul J. Sideris
Steve G. Greenbaum
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5791-6_8