Skip to main content
Top

2013 | OriginalPaper | Chapter

10. Lithium-Ion Battery Systems and Technology

Authors : Zhengming John Zhang, Premanand Ramadass

Published in: Batteries for Sustainability

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion battery (LIB) is one of rechargeable battery types in which lithium ions move from the negative electrode (anode) to the positive electrode (cathode) during discharge, and back when charging. It is the most popular choice for consumer electronics applications mainly due to high-energy density, longer cycle and shelf life, and no memory effect. With Li-ion batteries currently gaining much attraction in electric drive vehicle, the concern for global warming and a clean environment may be well served with advances in such systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126CrossRef Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126CrossRef
2.
go back to reference Goodenough JB (1980) U.S. Patent 4,302,518 (Issued 31 Mar 1980) Goodenough JB (1980) U.S. Patent 4,302,518 (Issued 31 Mar 1980)
3.
go back to reference Ikeda H, Narukawa K, Nakashim H (1981) Japanese Patent 1769661 (Issued 18 June 1981) Ikeda H, Narukawa K, Nakashim H (1981) Japanese Patent 1769661 (Issued 18 June 1981)
4.
go back to reference Basu S (1982) U.S. Patent 4,423,125 (Issued 13 Sept 1982) Basu S (1982) U.S. Patent 4,423,125 (Issued 13 Sept 1982)
5.
go back to reference Yoshino A, Jitsuchika K, Nakashima T (1985) Japanese Patent 1989293 (Issued 10 May 1985) Yoshino A, Jitsuchika K, Nakashima T (1985) Japanese Patent 1989293 (Issued 10 May 1985)
6.
go back to reference Gozdz AS, Schmutz CN, Tarascon JM (1994) U.S. Patent 5,296,318 (Issued 22 Mar 1994) Gozdz AS, Schmutz CN, Tarascon JM (1994) U.S. Patent 5,296,318 (Issued 22 Mar 1994)
7.
go back to reference Gozdz AS, Schmutz CN, Tarascon JM, Warren PC (1995) U.S. Patent 5,418,091 (Issued 23 May 1995) Gozdz AS, Schmutz CN, Tarascon JM, Warren PC (1995) U.S. Patent 5,418,091 (Issued 23 May 1995)
8.
go back to reference Gozdz AS, Schmutz CN, Tarascon JM, Warren PC (1995) U.S. Patent 5,456,000 (Issued 10 Oct 1995) Gozdz AS, Schmutz CN, Tarascon JM, Warren PC (1995) U.S. Patent 5,456,000 (Issued 10 Oct 1995)
9.
go back to reference Gozdz AS, Tarascon JM, Warren PC (1995) U.S. Patent 5,460,904 (Issued 24 Oct 1995) Gozdz AS, Tarascon JM, Warren PC (1995) U.S. Patent 5,460,904 (Issued 24 Oct 1995)
11.
go back to reference Institute of Information Technology, Ltd. (IIT) report, Year 2010, Q4, Chapter 7 Institute of Information Technology, Ltd. (IIT) report, Year 2010, Q4, Chapter 7
12.
go back to reference Brodd RJ (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 1–7CrossRef Brodd RJ (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 1–7CrossRef
13.
go back to reference Takeshita H (2006) 23 rd international seminar on primary and secondary batteries, Ft. Lauderdale, Mar 2006 Takeshita H (2006) 23 rd international seminar on primary and secondary batteries, Ft. Lauderdale, Mar 2006
14.
go back to reference Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems–the solid electrolyte interphase model. J Electrochem Soc 126:2047 Peled E (1979) The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems–the solid electrolyte interphase model. J Electrochem Soc 126:2047
15.
go back to reference Peled E (1999) In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, pp 419–458 Peled E (1999) In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, pp 419–458
16.
go back to reference Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301 Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301
17.
go back to reference Zhang ZJ (2011) Li-ion application in EDV and its safety perspectives, Pacific power sources symposium 2011, Hawaii Zhang ZJ (2011) Li-ion application in EDV and its safety perspectives, Pacific power sources symposium 2011, Hawaii
18.
go back to reference Zhengming (John) Z, Ramadass P (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 367–412 Zhengming (John) Z, Ramadass P (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 367–412
19.
go back to reference Tagawa K, Brodd RJ (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 181–193 Tagawa K, Brodd RJ (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 181–193
20.
go back to reference Kim J, Hong JJ, Koh S (2006) Proceedings of the 42nd power sources conference, Philadelphia, June 2006 Kim J, Hong JJ, Koh S (2006) Proceedings of the 42nd power sources conference, Philadelphia, June 2006
21.
go back to reference Tullo A (2006) Dell recalls lithium batteries. In: Chemical and engineering news: American Chemical Society, 21 Aug 2006 Tullo A (2006) Dell recalls lithium batteries. In: Chemical and engineering news: American Chemical Society, 21 Aug 2006
22.
go back to reference Hales P (2006) Dell laptop explodes at Japanese conference. In: The inquirer, June 2006 Staff (27 July 2007). Nokia – Retrieved 15 June 2010 Hales P (2006) Dell laptop explodes at Japanese conference. In: The inquirer, June 2006 Staff (27 July 2007). Nokia – Retrieved 15 June 2010
23.
go back to reference N91 cell phone explodes Mukamo. In: Filipino news (blog), July 2007 N91 cell phone explodes Mukamo. In: Filipino news (blog), July 2007
24.
go back to reference IEEE 1625 (2008) IEEE standard for rechargeable batteries for multi-cell mobile computing devices IEEE 1625 (2008) IEEE standard for rechargeable batteries for multi-cell mobile computing devices
25.
go back to reference IEEE 1725 (2011) IEEE standard for rechargeable batteries for cellular telephones IEEE 1725 (2011) IEEE standard for rechargeable batteries for cellular telephones
26.
go back to reference UL 1642 (1995) UL standard for safety for lithium batteries, 3rd edn., Dated April 26, 1995 UL 1642 (1995) UL standard for safety for lithium batteries, 3rd edn., Dated April 26, 1995
28.
go back to reference Santhanagopalan S, Ramadass P, Zhang Z (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194:550–557 Santhanagopalan S, Ramadass P, Zhang Z (2009) Analysis of internal short-circuit in a lithium ion cell. J Power Sources 194:550–557
29.
go back to reference Nishi H (1998) Lithium ion batteries. In: Wakihara M, Yamamoto O (eds) Fundamentals and performances. Codensha/Wiley, New York, pp 181–198 Nishi H (1998) Lithium ion batteries. In: Wakihara M, Yamamoto O (eds) Fundamentals and performances. Codensha/Wiley, New York, pp 181–198
30.
go back to reference Dahn JR (1991) The phase diagram of LixC6. Phys Rev B 44:9170 Dahn JR (1991) The phase diagram of LixC6. Phys Rev B 44:9170
31.
go back to reference Tatsumi K, Zaghib K, Sawada Y, Abe H, Ohsaki T (1995) Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries. J Electrochem Soc 142:1090 Tatsumi K, Zaghib K, Sawada Y, Abe H, Ohsaki T (1995) Anode performance of vapor-grown carbon fibers in secondary lithium-ion batteries. J Electrochem Soc 142:1090
32.
go back to reference Aurbach D, Levi M, Levi E (1997) The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J Electroanal Chem 421:79 Aurbach D, Levi M, Levi E (1997) The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling. J Electroanal Chem 421:79
33.
go back to reference Aurbach D, Ein-Eli E (1995) The study of Li-Graphite intercalation processes in several electrolyte systems using In Situ X-ray diffraction. J Electrochem Soc 142:1746 Aurbach D, Ein-Eli E (1995) The study of Li-Graphite intercalation processes in several electrolyte systems using In Situ X-ray diffraction. J Electrochem Soc 142:1746
34.
go back to reference Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of Lithium-Graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell. J Electrochem Soc 140:2490 Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of Lithium-Graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (Shuttlecock) cell. J Electrochem Soc 140:2490
35.
go back to reference Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M (1995) In Situ raman study on electrochemical Li intercalation into graphite. J Electrochem Soc 142:20 Inaba M, Yoshida H, Ogumi Z, Abe T, Mizutani Y, Asano M (1995) In Situ raman study on electrochemical Li intercalation into graphite. J Electrochem Soc 142:20
36.
go back to reference Funabiki A, Inaba M, Abe T, Ogumi Z (1999) Nucleation and phase-boundary movement upon stage transformation in lithium–graphite intercalation compounds. Electrochim Acta 45:865 Funabiki A, Inaba M, Abe T, Ogumi Z (1999) Nucleation and phase-boundary movement upon stage transformation in lithium–graphite intercalation compounds. Electrochim Acta 45:865
37.
go back to reference Xu K, Zhang S, Poese BA, Jow TR (2002) Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem Solid-State Lett 5:A259 Xu K, Zhang S, Poese BA, Jow TR (2002) Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem Solid-State Lett 5:A259
38.
go back to reference Kinoshita K (1998) Carbo: electrochemical and physico-chemical properties. Wiley, New York, p 70 Kinoshita K (1998) Carbo: electrochemical and physico-chemical properties. Wiley, New York, p 70
39.
go back to reference Wang H, Ikeda T, Fukuda K, Yoshio M (1999) Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery. J Power Sources 83:141 Wang H, Ikeda T, Fukuda K, Yoshio M (1999) Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery. J Power Sources 83:141
40.
go back to reference Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147:1245 Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J Electrochem Soc 147:1245
41.
go back to reference Wang H, Yoshio M (2001) Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery. J Power Sources 93:123–129 Wang H, Yoshio M (2001) Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery. J Power Sources 93:123–129
42.
go back to reference Wang H, Yoshio M, Abe T, Ogumi Z (2002) Characterization of carbon-coated natural graphite as a lithium-ion battery anode material. J Electrochem Soc 149:A499 Wang H, Yoshio M, Abe T, Ogumi Z (2002) Characterization of carbon-coated natural graphite as a lithium-ion battery anode material. J Electrochem Soc 149:A499
43.
go back to reference Nishida T (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 329–341 Nishida T (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 329–341
44.
go back to reference Wakihara M, Yamamoto O (1998) Lithium batteries-fundamentals and performance. Wiley-VCH, Germany Wakihara M, Yamamoto O (1998) Lithium batteries-fundamentals and performance. Wiley-VCH, Germany
45.
go back to reference Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?. J Power Sources 68:87 Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?. J Power Sources 68:87
46.
go back to reference Ozhuku T, Tomura H, Sawai K (1997) Monitoring of particle fracture by acoustic emission during charge and discharge of Li/MnO2 cells. J Electrochem Soc 144:3496 Ozhuku T, Tomura H, Sawai K (1997) Monitoring of particle fracture by acoustic emission during charge and discharge of Li/MnO2 cells. J Electrochem Soc 144:3496
47.
go back to reference Ozhuku T, Matoba N, Sawai K (2001) Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry. J Power Sources 97–98:73 Ozhuku T, Matoba N, Sawai K (2001) Direct evidence on anomalous expansion of graphite-negative electrodes on first charge by dilatometry. J Power Sources 97–98:73
48.
go back to reference Yoshio M, Wang H, Fukuda K, Umeno T (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598 Yoshio M, Wang H, Fukuda K, Umeno T (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598
49.
go back to reference Neudecker BJ, Zuhr RA, Bates JB (1999) Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics. J Power Sources 81:27 Neudecker BJ, Zuhr RA, Bates JB (1999) Lithium silicon tin oxynitride (LiySiTON): high-performance anode in thin-film lithium-ion batteries for microelectronics. J Power Sources 81:27
50.
go back to reference Bordearu S, Brousse T, Schleich DM (1999) Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources 81:233 Bordearu S, Brousse T, Schleich DM (1999) Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources 81:233
51.
go back to reference Green M, Fielder E, Scrosati B, Watchler M, Moreno JS (2003) Structured silicon anodes for lithium battery applications. Electrochem Solid State Lett 6:A75 Green M, Fielder E, Scrosati B, Watchler M, Moreno JS (2003) Structured silicon anodes for lithium battery applications. Electrochem Solid State Lett 6:A75
52.
go back to reference Takamura T, Ohara S, Suzuki J, Sekine K (2002) The 11th international meeting on Lithium batteries, Monterey, 23–28 June 2002, Abs#257 Takamura T, Ohara S, Suzuki J, Sekine K (2002) The 11th international meeting on Lithium batteries, Monterey, 23–28 June 2002, Abs#257
53.
go back to reference Zaghib K, Kinoshita K (2004) 12th international meeting on Lithium batteries, Nara, 27 June–2 July 2004, Abs#7 Zaghib K, Kinoshita K (2004) 12th international meeting on Lithium batteries, Nara, 27 June–2 July 2004, Abs#7
54.
go back to reference Yonezu I, Tarui H, Yoshimura S, Fujitani S, Nohma T (2004) 12th international meeting on Lithium batteries, Nara, 27 June–2 July 2004, Abs#58 Yonezu I, Tarui H, Yoshimura S, Fujitani S, Nohma T (2004) 12th international meeting on Lithium batteries, Nara, 27 June–2 July 2004, Abs#58
55.
go back to reference Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598 Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149:A1598
56.
go back to reference Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114:88 Dimov N, Fukuda K, Umeno T, Kugino S, Yoshio M (2003) Characterization of carbon-coated silicon: structural evolution and possible limitations. J Power Sources 114:88
57.
go back to reference Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y (2004) Morphology-stable silicon-based composite for Li-intercalation. Solid State Ionics 168:61 Liu Y, Hanai K, Yang J, Imanishi N, Hirano A, Takeda Y (2004) Morphology-stable silicon-based composite for Li-intercalation. Solid State Ionics 168:61
58.
go back to reference Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783 Mitzushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0<x<−1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783
59.
go back to reference Tarascon JM, McKinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J Electrochem Soc 141:1421 Tarascon JM, McKinnon WR, Coowar F, Bowmer TN, Amatucci G, Guyomard D (1994) Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J Electrochem Soc 141:1421
60.
go back to reference Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461 Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461
61.
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188 Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188
62.
go back to reference Mukerjee S, Yang XQ, Sun X, Lee SJ, McBreen J, Ein-Eli Y (2004) In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochim Acta 49:3373 Mukerjee S, Yang XQ, Sun X, Lee SJ, McBreen J, Ein-Eli Y (2004) In situ synchrotron X-ray studies on copper–nickel 5 V Mn oxide spinel cathodes for Li-ion batteries. Electrochim Acta 49:3373
63.
go back to reference Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type Li(Mn y Fe1−y )PO4 and (Mn y Fe1−y )PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148:A960 Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type Li(Mn y Fe1−y )PO4 and (Mn y Fe1−y )PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148:A960
64.
go back to reference Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid State Lett 5:A135 Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid State Lett 5:A135
65.
go back to reference Nakai I, Nakagome T (1998) In Situ transmission X-ray absorption fine structure analysis of the Li deintercalation process in Li(Ni0.5Co0.5)O2. Electrochem Solid State Lett 1:259 Nakai I, Nakagome T (1998) In Situ transmission X-ray absorption fine structure analysis of the Li deintercalation process in Li(Ni0.5Co0.5)O2. Electrochem Solid State Lett 1:259
66.
go back to reference Yoshio M et al (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 9–48CrossRef Yoshio M et al (2009) In: Yoshio M, Brodd RJ, Kozawa A (eds) Li-ion batteries: science and technologies. Springer, New York, pp 9–48CrossRef
67.
go back to reference Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[NiMn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 30:1270CrossRef Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[NiMn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 30:1270CrossRef
68.
go back to reference Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642 Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642
69.
go back to reference Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171 Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171
70.
go back to reference Park SH, Yoon CS, Kang SG, Kim H-S, Moon S-I, Sun Y-K (2004) Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim Acta 49:557 Park SH, Yoon CS, Kang SG, Kim H-S, Moon S-I, Sun Y-K (2004) Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochim Acta 49:557
71.
go back to reference Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 30:1270 Ohzuku T, Ariyoshi K, Yamamoto S, Makimura Y (2001) A 3-volt lithium-ion cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: a method to prepare stable positive-electrode material of highly crystallized Li[Ni1/2Mn3/2]O4. Chem Lett 30:1270
72.
go back to reference Sun YK et al (2005) Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries. J Am Chem Soc 127:13411 Sun YK et al (2005) Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core–shell structure as the positive electrode material for lithium batteries. J Am Chem Soc 127:13411
73.
go back to reference Sun YK et al (2006) Novel core–shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries. J Phys Chem B 110:6810 Sun YK et al (2006) Novel core–shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries. J Phys Chem B 110:6810
74.
go back to reference Sun YK et al (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320 Sun YK et al (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320
75.
go back to reference Thackeray M (2009) US DOE-VT Annual merit review, Proj ID ES020 Thackeray M (2009) US DOE-VT Annual merit review, Proj ID ES020
76.
go back to reference Amine K (2010) US DOE merit review, Proj. ID ES015 Amine K (2010) US DOE merit review, Proj. ID ES015
77.
go back to reference Ho-Jin Kweon, Jun-Won Suh, Won II Jung (2004) U.S. Patent 6, 753, 111 (Issued 22 June 2004) Ho-Jin Kweon, Jun-Won Suh, Won II Jung (2004) U.S. Patent 6, 753, 111 (Issued 22 June 2004)
78.
go back to reference Cho J et al (2001) High-performance ZrO2-coated LiNiO2 cathode material. Electrochem Solid State Lett 4(10):A159 Cho J et al (2001) High-performance ZrO2-coated LiNiO2 cathode material. Electrochem Solid State Lett 4(10):A159
79.
go back to reference Cho J et al (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12(12):3788 Cho J et al (2000) Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem Mater 12(12):3788
80.
go back to reference Fujimoto M, Takahashi M, Nishio A (1992) Japan patent 3059832 (Issued 27 July 1992) Fujimoto M, Takahashi M, Nishio A (1992) Japan patent 3059832 (Issued 27 July 1992)
81.
go back to reference Simon A, Boeuve J-P (1997) U.S. patent 5,626,981 (Issued 6 May 1997) Simon A, Boeuve J-P (1997) U.S. patent 5,626,981 (Issued 6 May 1997)
82.
go back to reference Wrodnigg GH, Besenhard JO, Winter M (1999) Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J Electrochem Soc 146:470 Wrodnigg GH, Besenhard JO, Winter M (1999) Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. J Electrochem Soc 146:470
83.
go back to reference Wrodnigg GH, Wrodnigg TM, Besenhard JO, Winter M (1999) Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem Commun 1:148 Wrodnigg GH, Wrodnigg TM, Besenhard JO, Winter M (1999) Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem Commun 1:148
84.
go back to reference Wrodnigg GH, Besenhard JO, Winter M (2001) Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?. J Power Sources 97–98:592 Wrodnigg GH, Besenhard JO, Winter M (2001) Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes?. J Power Sources 97–98:592
85.
go back to reference Kusachi Y, Utsugi K (2003) Extended abstracts of the 44th battery symposium in Japan, Sakai, p 526 4–6 Nov (2003) Kusachi Y, Utsugi K (2003) Extended abstracts of the 44th battery symposium in Japan, Sakai, p 526 4–6 Nov (2003)
86.
go back to reference Xiao L, Ai X, Cao Y, Yang H (2004) Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim Acta 49:4189 Xiao L, Ai X, Cao Y, Yang H (2004) Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium ion batteries. Electrochim Acta 49:4189
87.
go back to reference Kim H-J, Yoo S-I, Cho J-J (2002) Extended abstracts of the 43 rd battery symposium in Japan, Fukuoka, 12–14 Oct 2002, p 78 Kim H-J, Yoo S-I, Cho J-J (2002) Extended abstracts of the 43 rd battery symposium in Japan, Fukuoka, 12–14 Oct 2002, p 78
88.
go back to reference Tobishima S, Ogino Y, Watanabe Y (2002) Effect of electrolyte additives to provide safety and discharge characteristics of lithium batteries. Electrochemistry 70:875 Tobishima S, Ogino Y, Watanabe Y (2002) Effect of electrolyte additives to provide safety and discharge characteristics of lithium batteries. Electrochemistry 70:875
89.
go back to reference Adachi M, Tanaka K, Sekai K (1999) Aromatic compounds as redox shuttle additives for 4 V class secondary lithium batteries. J Electrochem Soc 146:1256 Adachi M, Tanaka K, Sekai K (1999) Aromatic compounds as redox shuttle additives for 4 V class secondary lithium batteries. J Electrochem Soc 146:1256
90.
go back to reference Lee D-Y, Lee H-S, Kim H-S, Sun H-Y, Seung D-Y (2002) Redox shuttle additives for chemical overcharge protection in lithium ion batteries. Korean J Chem Eng 19:645 Lee D-Y, Lee H-S, Kim H-S, Sun H-Y, Seung D-Y (2002) Redox shuttle additives for chemical overcharge protection in lithium ion batteries. Korean J Chem Eng 19:645
91.
go back to reference Blomgren GE (1999) Electrolytes for advanced batteries. J Power Sources 81–82:112 Blomgren GE (1999) Electrolytes for advanced batteries. J Power Sources 81–82:112
92.
go back to reference Suzuki H, Shima N, Hasegawa K, Yoshida Y (1996) JP1996–306387A; JP3893627B Suzuki H, Shima N, Hasegawa K, Yoshida Y (1996) JP1996–306387A; JP3893627B
93.
go back to reference Noda D, Kotato M, Fuji T, Suzuki H (2002) JP2002–319433A Noda D, Kotato M, Fuji T, Suzuki H (2002) JP2002–319433A
94.
go back to reference Lee CW, Venkatachalapathy R, Prakash J (2000) A novel flame-retardant additive for lithium batteries. Electrochem Solid-State Lett 3:63 Lee CW, Venkatachalapathy R, Prakash J (2000) A novel flame-retardant additive for lithium batteries. Electrochem Solid-State Lett 3:63
95.
go back to reference Zhang S, Xu K, Jow TR (2003) Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources 113:166 Zhang S, Xu K, Jow TR (2003) Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources 113:166
96.
go back to reference Gozales SI, Li W, Lucht BL (2004) Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes. J Power Sources 135:291 Gozales SI, Li W, Lucht BL (2004) Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes. J Power Sources 135:291
97.
go back to reference Okuno H et al (1996) U.S. patent 5,525, 443 (Issued 11 June 1996) Okuno H et al (1996) U.S. patent 5,525, 443 (Issued 11 June 1996)
98.
go back to reference Yamaguchi et al (2009) U.S. patent 7,491, 471 B2, 17 Feb 2009 Yamaguchi et al (2009) U.S. patent 7,491, 471 B2, 17 Feb 2009
99.
go back to reference Abe K et al (2011) U.S. patent application 20110045361 (Pub. Date 24 Feb 2011) Abe K et al (2011) U.S. patent application 20110045361 (Pub. Date 24 Feb 2011)
Metadata
Title
Lithium-Ion Battery Systems and Technology
Authors
Zhengming John Zhang
Premanand Ramadass
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-5791-6_10