Skip to main content
Top

2018 | OriginalPaper | Chapter

17. Lithium-ion cell and battery production processes

Authors : Karl-Heinz Pettinger, Achim Kampker, Claus-Rupert Hohenthanner, Christoph Deutskens, Heiner Heimes, Ansgar vom Hemdt

Published in: Lithium-Ion Batteries: Basics and Applications

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lithium-ion batteries for electric mobility applications consist of battery modules made up of many individual battery cells (Fig. 17.1). The number of battery modules depends on the application. The modules are installed in a lithium-ion battery together with a battery management system, a cooling system, temperature management, and power electronics. Different cell types can be used in battery modules; they include round cells, prismatic hardcase cells, or flat cells such as coffee bag cells or pouch cells (more detailed information available in Chapter 9).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Haselrieder (2013) Efficient electrode production for lithium-ion batteries Haselrieder (2013) Efficient electrode production for lithium-ion batteries
2.
go back to reference Bauer W, Nötzel D (2011) Rheological properties of electrode pastes for lithium iron phosphate and NMC batteries Bauer W, Nötzel D (2011) Rheological properties of electrode pastes for lithium iron phosphate and NMC batteries
3.
go back to reference Flynn J-C, Marsh C (2012) Development of continuous coating technology for lithium-ion electrodes Flynn J-C, Marsh C (2012) Development of continuous coating technology for lithium-ion electrodes
4.
go back to reference Haselrieder (2011) Auslegung und Scale-up des Trocknungsprozesses zur Fertigung von leistungsfähigen Elektroden mit optimierter Struktur und Haftung Haselrieder (2011) Auslegung und Scale-up des Trocknungsprozesses zur Fertigung von leistungsfähigen Elektroden mit optimierter Struktur und Haftung
5.
go back to reference Zheng Y, Tian L (2012) Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode Zheng Y, Tian L (2012) Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathode
7.
go back to reference Spahr M, Goers D, Leone A, Grivei E (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196(7):3404 – 34138.CrossRef Spahr M, Goers D, Leone A, Grivei E (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196(7):3404 – 34138.CrossRef
8.
go back to reference Sanchez-Gonzalez J, Macias-Garcia A, Alexandre-Franco MF, Gomez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43:741 – 747CrossRef Sanchez-Gonzalez J, Macias-Garcia A, Alexandre-Franco MF, Gomez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43:741 – 747CrossRef
9.
go back to reference Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/Carbon cathode. Electrochem Solid-State Lett 8(9):A484 – A487CrossRef Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/Carbon cathode. Electrochem Solid-State Lett 8(9):A484 – A487CrossRef
10.
go back to reference Chen J, Wang JZ, Minett AI, Liu Y, Lynam C, Liu H, Wallace GG (2009) Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy Environ Sci 2:393 – 396CrossRef Chen J, Wang JZ, Minett AI, Liu Y, Lynam C, Liu H, Wallace GG (2009) Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy Environ Sci 2:393 – 396CrossRef
11.
go back to reference Zhamu A, Shi J, Chen G, Fang Q, Jang BZ (2012) Graphene-enhanced anode particulates for lithium ion batteries. US 2012/0064409 A1 Zhamu A, Shi J, Chen G, Fang Q, Jang BZ (2012) Graphene-enhanced anode particulates for lithium ion batteries. US 2012/0064409 A1
12.
go back to reference Buqa H, Holzapfel M, Krummeich F, Veit C, Novak P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617 – 62CrossRef Buqa H, Holzapfel M, Krummeich F, Veit C, Novak P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617 – 62CrossRef
13.
go back to reference Lee J-H, Paik U, Hackley VA, Choi Y-M (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763 – A1769CrossRef Lee J-H, Paik U, Hackley VA, Choi Y-M (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763 – A1769CrossRef
14.
go back to reference Sano A, Kurihara M, Ogawa K, Iijima T, Maruyama S (2009) Decreasing the initial irreversible capacity loss of graphite negative electrode by alkali-addition. J Power Sources 192:703 – 707CrossRef Sano A, Kurihara M, Ogawa K, Iijima T, Maruyama S (2009) Decreasing the initial irreversible capacity loss of graphite negative electrode by alkali-addition. J Power Sources 192:703 – 707CrossRef
15.
go back to reference Lee JH, Lee S, Paik U, Choi Y-M (2005) Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J Power Sources 147:249 – 255CrossRef Lee JH, Lee S, Paik U, Choi Y-M (2005) Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J Power Sources 147:249 – 255CrossRef
16.
go back to reference Zaidi W, Oumellal Y, Bonnet J-P, Zhang J, Cuevas F, Latroche M, Bobet JL, Aymard L (2011) Carboxymethylcellulose and carboxymethycellulose-formate as binders in MgH2-carbon composites for lithium-ion batteries. J Power sources 196:2854 – 2857 Zaidi W, Oumellal Y, Bonnet J-P, Zhang J, Cuevas F, Latroche M, Bobet JL, Aymard L (2011) Carboxymethylcellulose and carboxymethycellulose-formate as binders in MgH2-carbon composites for lithium-ion batteries. J Power sources 196:2854 – 2857
17.
go back to reference Ouatani LE, Dedryvère R, Ledeuil J-B, Biensan P, Desbrieres J, Gonbeau D (2009) Surface film formation on carbonaceous electrode: influence of the binder chemistry. J Power Sources 89:72 – 80CrossRef Ouatani LE, Dedryvère R, Ledeuil J-B, Biensan P, Desbrieres J, Gonbeau D (2009) Surface film formation on carbonaceous electrode: influence of the binder chemistry. J Power Sources 89:72 – 80CrossRef
18.
go back to reference Lee J-H, Kim H-H, Wee SB, Paik U (2009) Effect of additives on the dispersion properties of aqueous based C/LiFePO4 paste and its impact on lithium ion battery high power properties. Hosaka powder technology foundation, KONA powder and particle. Journal 27CrossRef Lee J-H, Kim H-H, Wee SB, Paik U (2009) Effect of additives on the dispersion properties of aqueous based C/LiFePO4 paste and its impact on lithium ion battery high power properties. Hosaka powder technology foundation, KONA powder and particle. Journal 27CrossRef
19.
go back to reference Lanciotti C (2009) Lithium battery cell manufacturing process. Joint European Commission/EPoSS/ERTRAC workshop 2009, Brussels, Kemet Arcotronics Technologies, Sasso Marconi, Italy Lanciotti C (2009) Lithium battery cell manufacturing process. Joint European Commission/EPoSS/ERTRAC workshop 2009, Brussels, Kemet Arcotronics Technologies, Sasso Marconi, Italy
20.
go back to reference Schelisch J (2011) Forschung für die Produktion von Morgen, Portraits der ausgewählten Projekte im BMBF-Programm Forschung für die Produktion von morgen. Projektträger Karlsruhe (PTKA-PFT), Bundesministerium für Bildung und Forschung Schelisch J (2011) Forschung für die Produktion von Morgen, Portraits der ausgewählten Projekte im BMBF-Programm Forschung für die Produktion von morgen. Projektträger Karlsruhe (PTKA-PFT), Bundesministerium für Bildung und Forschung
21.
go back to reference Freedom CAR: Electrical energy storage system abuse test manual for electric and hybrid vehicle applications; Sandia Report, SAND 2005 – 3123 Freedom CAR: Electrical energy storage system abuse test manual for electric and hybrid vehicle applications; Sandia Report, SAND 2005 – 3123
Metadata
Title
Lithium-ion cell and battery production processes
Authors
Karl-Heinz Pettinger
Achim Kampker
Claus-Rupert Hohenthanner
Christoph Deutskens
Heiner Heimes
Ansgar vom Hemdt
Copyright Year
2018
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53071-9_17