Skip to main content
Top

2024 | OriginalPaper | Chapter

Loading-Unloading Compressive Response and Energy Dissipation of Liquid Crystal Elastomers and Their 3D Printed Lattice Structures at Various Strain Rates

Authors : Bo Song, Dylan Landry, Thomas Martinez, Christopher Chung, Kevin Long, Kai Yu, Chris Yakacki

Published in: Additive and Advanced Manufacturing, Inverse Problem Methodologies and Machine Learning and Data Science, Volume 4

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nematic liquid crystal elastomers (LCEs) are a unique class of network polymers with potential for excellent mechanical energy absorption and dissipation capacity due to their ability to change the nematic director under mechanical loading (sometimes called soft-elasticity) in addition to the viscoelastic behavior of the remaining polymer network. This additional inelastic mechanism makes them appealing as candidate damping materials in a variety of applications from vibration to impact. The lattice structures made from the LCEs provide further mechanical energy absorption and dissipation capacity associated with packing out the porosity.
Understanding the extent of mechanical energy absorption versus dissipation depends on the mechanical stress-strain response under both loading and unloading. In the past, the loading-unloading stress-strain response was only obtained within quasi-static (slow) strain rates on standard material test frames. In this study, we used a newly developed bench-top linear actuator to characterize the loading-unloading compressive response of polydomain and monodomain LCE polymers and polydomain LCE lattice structures with two different porosities (nominally, 62% and 85%) at both low and intermediate strain rates at room temperature. As a reference material, a bisphenol A (BPA) polymer with a similar glass transition temperature (9 °C) as the nematic LCE (4 °C) was also characterized at the same conditions for comparing to the LCE polymers. Based on the loading-unloading stress-strain curves, the energy absorption and dissipation for each material at different strain rates (0.001, 0.1, 1, 10 and 90 s−1) were able to be calculated. The strain-rate effect on the mechanical response and energy absorption and dissipation behaviors was determined.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Giamberini, M., Ambrogi, V., Cerruti, P., Carfagna, C.: Viscoelasticity of main chain liquid crystalline elastomers. Polymer. 47, 4490–4496 (2006)CrossRef Giamberini, M., Ambrogi, V., Cerruti, P., Carfagna, C.: Viscoelasticity of main chain liquid crystalline elastomers. Polymer. 47, 4490–4496 (2006)CrossRef
2.
go back to reference Jiang, H., Li, C., Huang, X.: Actuators based on liquid crystalline elastomer materials. Nanoscale. 5, 5225–5240 (2013)CrossRef Jiang, H., Li, C., Huang, X.: Actuators based on liquid crystalline elastomer materials. Nanoscale. 5, 5225–5240 (2013)CrossRef
3.
go back to reference Ula, S.W., Traugutt, N.A., Volpe, R.H., Patel, R.R., Yu, K., Yakacki, C.M.: Liquid crystal elastomers: an introduction and review of emerging technologies. Liq. Cryst. Rev. 6, 78–107 (2018)CrossRef Ula, S.W., Traugutt, N.A., Volpe, R.H., Patel, R.R., Yu, K., Yakacki, C.M.: Liquid crystal elastomers: an introduction and review of emerging technologies. Liq. Cryst. Rev. 6, 78–107 (2018)CrossRef
4.
go back to reference Hussain, M., Jull, E.I.L., Mandle, R.J., Raistrick, T., Hine, P.J., Gleeson, H.F.: Liquid crystal elastomers for biological applications. Nano. 11, 813 (2021) Hussain, M., Jull, E.I.L., Mandle, R.J., Raistrick, T., Hine, P.J., Gleeson, H.F.: Liquid crystal elastomers for biological applications. Nano. 11, 813 (2021)
5.
go back to reference Annapooranan, R., Wang, Y., Cai, S.: Highly durable and tough liquid crystal elastomers. ACS Appl. Mater. Interfaces. 14, 2006–2014 (2022)CrossRef Annapooranan, R., Wang, Y., Cai, S.: Highly durable and tough liquid crystal elastomers. ACS Appl. Mater. Interfaces. 14, 2006–2014 (2022)CrossRef
7.
go back to reference Mistry, D., Traugutt, N.A., Yu, K., Yakacki, C.M.: Processing and reprocessing liquid crystal elastomer actuators. J. Appl. Phys. 129, 130901 (2021)CrossRef Mistry, D., Traugutt, N.A., Yu, K., Yakacki, C.M.: Processing and reprocessing liquid crystal elastomer actuators. J. Appl. Phys. 129, 130901 (2021)CrossRef
8.
go back to reference Jeon, S.-Y., Shen, B., Traugutt, N.A., Zhu, Z., Fang, L., Yakacki, C.M., Nguyen, T.D., Kang, S.H.: Synergistic energy absorption mechanisms of architected liquid crystal elastomers. Adv. Mater. 34, 2200272 (2022)CrossRef Jeon, S.-Y., Shen, B., Traugutt, N.A., Zhu, Z., Fang, L., Yakacki, C.M., Nguyen, T.D., Kang, S.H.: Synergistic energy absorption mechanisms of architected liquid crystal elastomers. Adv. Mater. 34, 2200272 (2022)CrossRef
9.
go back to reference Zhang, Z., Huo, Y.: Programmable mechanical energy absorption and dissipation of liquid crystal elastomers: modeling and simulations. Adv. Eng. Mater. 24, 2100590 (2022)CrossRef Zhang, Z., Huo, Y.: Programmable mechanical energy absorption and dissipation of liquid crystal elastomers: modeling and simulations. Adv. Eng. Mater. 24, 2100590 (2022)CrossRef
10.
go back to reference Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 32, 2000797 (2020)CrossRef Traugutt, N.A., Mistry, D., Luo, C., Yu, K., Ge, Q., Yakacki, C.M.: Liquid-crystal-elastomer-based dissipative structures by digital light processing 3D printing. Adv. Mater. 32, 2000797 (2020)CrossRef
11.
go back to reference Luo, C., Chung, C., Traugutt, N.A., Yakacki, C.M., Long, K.N., Yu, K.: 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult. ACS Appl. Mater. Interfaces. 13, 12698–12708 (2021)CrossRef Luo, C., Chung, C., Traugutt, N.A., Yakacki, C.M., Long, K.N., Yu, K.: 3D printing of liquid crystal elastomer foams for enhanced energy dissipation under mechanical insult. ACS Appl. Mater. Interfaces. 13, 12698–12708 (2021)CrossRef
12.
go back to reference Mistry, D., Traugutt, N.A., Sanborn, B., Volpe, R.H., Chatham, L.S., Zhou, R., Song, B., Yu, K., Long, K.N., Yakacki, C.M.: Soft elasticity optimizes dissipation in 3D-printed liquid crystal elastomers. Nat. Commun. 12, 6677 (2021)CrossRef Mistry, D., Traugutt, N.A., Sanborn, B., Volpe, R.H., Chatham, L.S., Zhou, R., Song, B., Yu, K., Long, K.N., Yakacki, C.M.: Soft elasticity optimizes dissipation in 3D-printed liquid crystal elastomers. Nat. Commun. 12, 6677 (2021)CrossRef
13.
go back to reference Azoug, A., Vasconcellos, V., Dooling, J., Saed, M., Yakacki, C.M., Nguyen, T.D.: Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer. 98, 165–171 (2016)CrossRef Azoug, A., Vasconcellos, V., Dooling, J., Saed, M., Yakacki, C.M., Nguyen, T.D.: Viscoelasticity of the polydomain-monodomain transition in main-chain liquid crystal elastomers. Polymer. 98, 165–171 (2016)CrossRef
14.
go back to reference Martin Linares, C.P., Traugutt, N.A., Saed, M.O., Martin Linares, A., Yakacki, C.M., Nguyen, T.D.: The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer. Soft Matter. 16, 8782–8798 (2020)CrossRef Martin Linares, C.P., Traugutt, N.A., Saed, M.O., Martin Linares, A., Yakacki, C.M., Nguyen, T.D.: The effect of alignment on the rate-dependent behavior of a main-chain liquid crystal elastomer. Soft Matter. 16, 8782–8798 (2020)CrossRef
15.
go back to reference Song, B., Martinez, T., Landry, D., Aragon, P., Long, K.: Development of a bench-top intermediate-strain-rate (ISR) test apparatus for soft materials. J. Dyn. Behav. Mater. 9, 36–43 (2023) (online available) Song, B., Martinez, T., Landry, D., Aragon, P., Long, K.: Development of a bench-top intermediate-strain-rate (ISR) test apparatus for soft materials. J. Dyn. Behav. Mater. 9, 36–43 (2023) (online available)
16.
go back to reference Nie, X., Song, B., Loeffler, C.M.: A novel splitting-beam laser extensometer technique for Kolsky tension bar experiment. J. Dyn. Behav. Mater. 1, 70–74 (2015)CrossRef Nie, X., Song, B., Loeffler, C.M.: A novel splitting-beam laser extensometer technique for Kolsky tension bar experiment. J. Dyn. Behav. Mater. 1, 70–74 (2015)CrossRef
Metadata
Title
Loading-Unloading Compressive Response and Energy Dissipation of Liquid Crystal Elastomers and Their 3D Printed Lattice Structures at Various Strain Rates
Authors
Bo Song
Dylan Landry
Thomas Martinez
Christopher Chung
Kevin Long
Kai Yu
Chris Yakacki
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50474-7_2

Premium Partners