Skip to main content
Top
Published in: Mechanics of Composite Materials 1/2023

16-03-2023

Loading-Unloading-Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model

Authors: A. V. Khokhlov, A. V. Shaporev, O. N. Stolyarov

Published in: Mechanics of Composite Materials | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper presents results of uniaxial tensile tests of a multifilament polyester yarn in three-stage loading and unloading programs with different loading rates and subsequent recovery to study its viscoelastoplastic properties. The verificatio n of applicability of a physically nonlinear constitutive relation of Maxwell-type viscoelasticity with two material functions, studied in detail earlier, was accomplished by means of loadingunloading- recovery curves with different loading rates and durations (in the range up to 70% of the tensile strength of the yarn). At the first stage of an express inspection, it was established that most of the basic applicability indicators were fulfilled with an acceptable accuracy. However, one indicator was not fulfilled and warned us about possible difficulties in identifying and applying the Maxwell model to the describing the behavior of the polyester yarn. Two material functions for the multifilament polyester yarn were determined and two methods for identifying the constitutive relation according to the loading-unloading-recovery curves were developed. The ways to improve the initial identification methods were indicated. A fast and economical identification technique using only one loading-unloading-recovery curve was proposed that describes behavior of the polyester yarn more accurately. The material function describing the elastic strain was determined with a high accuracy. It appeared to be linearly dependent on the stress of the polyester yarn on the entire stress range considered. Verification of the calibrated model with the material functions determined carried out in several ways. It demonstrated that the model described satisfactorily the test data for the polyester yarn in the complex test programs. It was shown that an improved approximation of the viscoplastic strain by the model can be achieved by using tests with different loading durations. It was also shown that, for the polyester yarn, a series of tests with a loading duration of 300 s and various loading rates is insufficient, and the loading time has to be at least 900 s.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://doi.org/10.14498/vsgtu1512 A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://​doi.​org/​10.​14498/​vsgtu1512
3.
go back to reference A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci. 21, No. 1, 160-179 (2017). doi:https://doi.org/10.14498/vsgtu1524 A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci. 21, No. 1, 160-179 (2017). doi:https://​doi.​org/​10.​14498/​vsgtu1524
4.
go back to reference A. V. Khokhlov, “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] 22, No. 2, 293-324 (2018). doi:https://doi.org/10.14498/vsgtu1573 A. V. Khokhlov, “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.] 22, No. 2, 293-324 (2018). doi:https://​doi.​org/​10.​14498/​vsgtu1573
6.
go back to reference A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-Type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://doi.org/10.18698/1812-3368-2018-6-92-112 A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-Type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://​doi.​org/​10.​18698/​1812-3368-2018-6-92-112
8.
go back to reference A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No. 10, 956-963 (2019). doi:https://doi.org/10.1134/S0036029519100136 A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No. 10, 956-963 (2019). doi:https://​doi.​org/​10.​1134/​S003602951910013​6
9.
go back to reference A. J. East, “Polyester fibers,” In: Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin. Edited by J. E. McIntyre, Cambridge, Woodhead Publishing Ltd, 95-166 (2004). A. J. East, “Polyester fibers,” In: Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin. Edited by J. E. McIntyre, Cambridge, Woodhead Publishing Ltd, 95-166 (2004).
10.
go back to reference R. Chattopadhyay, “Introduction: types of technical textile yarn,” In: Technical Textile Yarns. Edited by R. Alagirusamy and A. Das, Cambridge,Woodhead Publishing Ltd, 3-55 (2010)CrossRef R. Chattopadhyay, “Introduction: types of technical textile yarn,” In: Technical Textile Yarns. Edited by R. Alagirusamy and A. Das, Cambridge,Woodhead Publishing Ltd, 3-55 (2010)CrossRef
11.
go back to reference R. Fangueiro, C. G. Pereira, and M. De Araujo, “Applications of polyesters and polyamides in civil engineering,” In: Polyesters and Polyamides. Edited by R. Fangueiro, Cambridge, Woodhead Publishing Ltd, 542-592 (2008).CrossRef R. Fangueiro, C. G. Pereira, and M. De Araujo, “Applications of polyesters and polyamides in civil engineering,” In: Polyesters and Polyamides. Edited by R. Fangueiro, Cambridge, Woodhead Publishing Ltd, 542-592 (2008).CrossRef
12.
go back to reference H. Yazdani, K. Hatami, and B. P. Grady, “Sensor-enabled geogrids for performance monitoring of reinforced soil structures,” J. Testing and Evaluation, 44, No. 1, 20140501 (2016). H. Yazdani, K. Hatami, and B. P. Grady, “Sensor-enabled geogrids for performance monitoring of reinforced soil structures,” J. Testing and Evaluation, 44, No. 1, 20140501 (2016).
13.
go back to reference C. W. Hsiehl, K. Lee, H. K. Yoo, and H. Jeon, “Tensile creep behavior of polyester geogrids by conventional and accelerated test methods,” Fibers and Polymers, 9, No. 4, 476-480 (2008).CrossRef C. W. Hsiehl, K. Lee, H. K. Yoo, and H. Jeon, “Tensile creep behavior of polyester geogrids by conventional and accelerated test methods,” Fibers and Polymers, 9, No. 4, 476-480 (2008).CrossRef
14.
go back to reference S.-S. Yeo and Y. G. Hsuan, “Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids,” Geotextiles and Geomembranes, 28, No. 5, 409-421 (2010).CrossRef S.-S. Yeo and Y. G. Hsuan, “Evaluation of creep behavior of high density polyethylene and polyethylene-terephthalate geogrids,” Geotextiles and Geomembranes, 28, No. 5, 409-421 (2010).CrossRef
17.
go back to reference S. Bandyopadhyay, A. Ghosh, and S. Y. Ali, “Tensile fatigue, stress relaxation, and creep behaviors of worsted core spun yarns,” J. Appl. Polymer Sci., 121, No. 4, 2123–2126 (2011).CrossRef S. Bandyopadhyay, A. Ghosh, and S. Y. Ali, “Tensile fatigue, stress relaxation, and creep behaviors of worsted core spun yarns,” J. Appl. Polymer Sci., 121, No. 4, 2123–2126 (2011).CrossRef
19.
go back to reference K. Chen, J. Yu, Y. Liu, M. Song, Q. Jiang, H. Ji, and H. Wang, “Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature,” Polymer Int., 68, No. 3, 555-563 (2019). doi: https://doi.org/10.1002/pi.574520. C. Le Clerc, A. R. Bunsell, and A. Piant, “Influence of temperature on the mechanical behavior of polyester fibers,” J. Mater. Sci., 41, No. 22, 7509–7523 (2006). K. Chen, J. Yu, Y. Liu, M. Song, Q. Jiang, H. Ji, and H. Wang, “Creep deformation and its correspondence to the microstructure of different polyester industrial yarns at room temperature,” Polymer Int., 68, No. 3, 555-563 (2019). doi: https://​doi.​org/​10.​1002/​pi.​574520. C. Le Clerc, A. R. Bunsell, and A. Piant, “Influence of temperature on the mechanical behavior of polyester fibers,” J. Mater. Sci., 41, No. 22, 7509–7523 (2006).
20.
go back to reference 21. A. Asayesh and A. JeSSDi, “Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn,” Textile Research J., 80, No. 7, 642-650 (2010).CrossRef 21. A. Asayesh and A. JeSSDi, “Modeling the creep behavior of plain woven fabrics constructed from textured polyester yarn,” Textile Research J., 80, No. 7, 642-650 (2010).CrossRef
21.
go back to reference 22. W. Huang, H. Liu, Y. Lian, and L. Li, “Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings,” Applied Ocean Research, 39, 113-120 (2013).CrossRef 22. W. Huang, H. Liu, Y. Lian, and L. Li, “Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings,” Applied Ocean Research, 39, 113-120 (2013).CrossRef
23.
go back to reference 24. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Moscow, Nauka (1966). 24. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Moscow, Nauka (1966).
24.
go back to reference 25. I. I. Bugakov, Creep of Polymeric Materials [in Russian], Moscow, Nauka (1973). 25. I. I. Bugakov, Creep of Polymeric Materials [in Russian], Moscow, Nauka (1973).
25.
go back to reference 26. N. N. Malinin, Calculations for Creep of Elements of Machine-Building Structures [in Russian], Moscow, Mashinostroenie (1981). 26. N. N. Malinin, Calculations for Creep of Elements of Machine-Building Structures [in Russian], Moscow, Mashinostroenie (1981).
26.
go back to reference 27. D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], Moscow, Mashinostroenie (1984). 27. D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], Moscow, Mashinostroenie (1984).
27.
go back to reference 28. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997). 28. A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997).
28.
go back to reference 29. J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008). 29. J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008).
29.
go back to reference 30. R. S. Lakes, Viscoelastic Materials, Cambridge, Cambridge Univ. Press (2009).CrossRef 30. R. S. Lakes, Viscoelastic Materials, Cambridge, Cambridge Univ. Press (2009).CrossRef
30.
go back to reference J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015). J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015).
31.
go back to reference A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016). A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016).
32.
go back to reference 33. A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef 33. A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef
33.
go back to reference 34. A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef 34. A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef
34.
go back to reference 35. M. K Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef 35. M. K Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent deformation of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef
35.
go back to reference 36. H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef 36. H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef
36.
go back to reference D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestnik Samara Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk, 20, No. 3, 496-507 (2016). D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestnik Samara Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauk, 20, No. 3, 496-507 (2016).
37.
go back to reference O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984). O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984).
38.
go back to reference 39. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef 39. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef
39.
go back to reference 40. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef 40. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef
40.
go back to reference V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Publ. Inc. (2010). V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Publ. Inc. (2010).
41.
go back to reference 42. Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent. Mater, 11, 159-172 (2007).CrossRef 42. Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent. Mater, 11, 159-172 (2007).CrossRef
42.
go back to reference 43. M. Megahed, A. R. S. Ponter, C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef 43. M. Megahed, A. R. S. Ponter, C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef
43.
go back to reference F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagnostika, 73, No. 10, 44-50 (2007). F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagnostika, 73, No. 10, 44-50 (2007).
44.
go back to reference V. P. Radchenko and D. V. Shapievsky Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008). V. P. Radchenko and D. V. Shapievsky Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008).
45.
go back to reference 46. K. Naumenko, H. Altenbach, and Y. Gorash, “Creep analysis with a stress range dependent constitutive model,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef 46. K. Naumenko, H. Altenbach, and Y. Gorash, “Creep analysis with a stress range dependent constitutive model,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef
46.
go back to reference 47. L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef 47. L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef
47.
go back to reference A. V. Khokhlov, “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22, No. 1, 65-95 (2018). doi:https://doi.org/10.14498/vsgtu1543 A. V. Khokhlov, “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22, No. 1, 65-95 (2018). doi:https://​doi.​org/​10.​14498/​vsgtu1543
48.
go back to reference 49. H. Qi and M. Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater, 37, No. 8, 817-839 (2005).CrossRef 49. H. Qi and M. Boyce, “Stress-strain behavior of thermoplastic polyurethanes,” Mech. Mater, 37, No. 8, 817-839 (2005).CrossRef
49.
go back to reference 50. A. D. Drozdov and N. Dusunceli, “Unusual mechanical response of carbon black-filled thermoplastic elastomers,” Mech. Mater., 69, 116-131 (2014).CrossRef 50. A. D. Drozdov and N. Dusunceli, “Unusual mechanical response of carbon black-filled thermoplastic elastomers,” Mech. Mater., 69, 116-131 (2014).CrossRef
Metadata
Title
Loading-Unloading-Recovery Curves for Polyester Yarns and Identification of the Nonlinear Maxwell-Type Viscoelastoplastic Model
Authors
A. V. Khokhlov
A. V. Shaporev
O. N. Stolyarov
Publication date
16-03-2023
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 1/2023
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10086-x

Other articles of this Issue 1/2023

Mechanics of Composite Materials 1/2023 Go to the issue

Premium Partners