Skip to main content
Top
Published in: Journal of Scientific Computing 2-3/2017

03-08-2017

Local Discontinuous Galerkin Methods for the Khokhlov–Zabolotskaya–Kuznetzov Equation

Authors: Ching-Shan Chou, Weizhou Sun, Yulong Xing, He Yang

Published in: Journal of Scientific Computing | Issue 2-3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Khokhlov–Zabolotskaya–Kuznetzov (KZK) equation is a model that describes the propagation of the ultrasound beams in the thermoviscous fluid. It contains a nonlocal diffraction term, an absorption term and a nonlinear term. Accurate numerical methods to simulate the KZK equation are important to its broad applications in medical ultrasound simulations. In this paper, we propose a local discontinuous Galerkin method to solve the KZK equation. We prove the \(L^2\) stability of our scheme and conduct a series of numerical experiments including the focused circular short tone burst excitation and the propagation of unfocused sound beams, which show that our scheme leads to accurate solutions and performs better than the benchmark solutions in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aanonsen, S.I., Barkve, T., Tjotta, J.N., Tjotta, S.: Distortion and harmonic generation in the nearfield of a finite amplitude sound beam. J. Acoust. Soc. Am. 75, 749–768 (1984)CrossRefMATH Aanonsen, S.I., Barkve, T., Tjotta, J.N., Tjotta, S.: Distortion and harmonic generation in the nearfield of a finite amplitude sound beam. J. Acoust. Soc. Am. 75, 749–768 (1984)CrossRefMATH
2.
go back to reference Baker, A.C., Berg, A., Sahin, A., Tjotta, J.N.: The nonlinear pressure field of plane rectangular apertures: experimental and theoretical results. J. Acoust. Soc. Am 97, 3510–3517 (1995)CrossRef Baker, A.C., Berg, A., Sahin, A., Tjotta, J.N.: The nonlinear pressure field of plane rectangular apertures: experimental and theoretical results. J. Acoust. Soc. Am 97, 3510–3517 (1995)CrossRef
3.
go back to reference Bakhvalov, N.S., Zhileikin, Y.M., Zabolotskaya, S.A.: Nonlinear Theory of Sound Beams. American Institute of Physics, New York (1987) Bakhvalov, N.S., Zhileikin, Y.M., Zabolotskaya, S.A.: Nonlinear Theory of Sound Beams. American Institute of Physics, New York (1987)
4.
go back to reference Blackstock, D.T.: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39, 1019–1026 (1966)CrossRefMATHMathSciNet Blackstock, D.T.: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39, 1019–1026 (1966)CrossRefMATHMathSciNet
5.
go back to reference Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. J. Comput. Phys. 141, 199–224 (1998)CrossRefMathSciNet Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. J. Comput. Phys. 141, 199–224 (1998)CrossRefMathSciNet
6.
go back to reference Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, pp. 3–50. Springer, Berlin, Heidelberg (2000) Cockburn, B., Karniadakis, G., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, pp. 3–50. Springer, Berlin, Heidelberg (2000)
7.
go back to reference Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)CrossRefMATHMathSciNet Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)CrossRefMATHMathSciNet
8.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MATH
9.
go back to reference Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimensional systems. Math. Comput. 52, 411–435 (1989)MATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: multidimensional systems. Math. Comput. 52, 411–435 (1989)MATH
10.
go back to reference Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)CrossRefMATHMathSciNet Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)CrossRefMATHMathSciNet
11.
go back to reference Froysa, K.-E., Tjotta, J.N., Tjotta, S.: Linear propagation of a pulsed sound beam from a plane or focusing source. J. Acoust. Soc. Am. 93, 80–92 (1993)CrossRef Froysa, K.-E., Tjotta, J.N., Tjotta, S.: Linear propagation of a pulsed sound beam from a plane or focusing source. J. Acoust. Soc. Am. 93, 80–92 (1993)CrossRef
12.
go back to reference Hajihasani, M., Farjami, Y., Gharibzadeh, S., Tavakkoli, J.: A novel numerical solution to the diffraction term in the KZK nonlinear wave equation. In: 2009 38th Annual Symposium of the Ultrasonic Industry Association (2009) Hajihasani, M., Farjami, Y., Gharibzadeh, S., Tavakkoli, J.: A novel numerical solution to the diffraction term in the KZK nonlinear wave equation. In: 2009 38th Annual Symposium of the Ultrasonic Industry Association (2009)
13.
go back to reference Hamilton, M.F.: Comparison of three transient solutions for the axial pressure in a focused sound beam. J. Acoust. Soc. Am. 92, 527–532 (1992)CrossRef Hamilton, M.F.: Comparison of three transient solutions for the axial pressure in a focused sound beam. J. Acoust. Soc. Am. 92, 527–532 (1992)CrossRef
14.
go back to reference Lee, Y.S.: Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluid. Ph.D. thesis, University of Texas (1993) Lee, Y.S.: Numerical solution of the KZK equation for pulsed finite amplitude sound beams in thermoviscous fluid. Ph.D. thesis, University of Texas (1993)
15.
go back to reference Lee, Y.S., Hamilton, M.F.: Time-domain modeling of pulsed finite-amplitude sound beams. J. Acoust. Soc. Am. 97, 906–917 (1995)CrossRef Lee, Y.S., Hamilton, M.F.: Time-domain modeling of pulsed finite-amplitude sound beams. J. Acoust. Soc. Am. 97, 906–917 (1995)CrossRef
16.
go back to reference Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)
18.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefMATHMathSciNet Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)CrossRefMATHMathSciNet
19.
go back to reference Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Phys. D 208, 21–58 (2005)CrossRefMATHMathSciNet Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Phys. D 208, 21–58 (2005)CrossRefMATHMathSciNet
20.
go back to reference Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MATHMathSciNet Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MATHMathSciNet
21.
22.
go back to reference Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)CrossRefMATHMathSciNet Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)CrossRefMATHMathSciNet
23.
go back to reference Yang, X., Cleveland, R.O.: Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J. Acoust. Soc. Am 117, 113–123 (2005)CrossRef Yang, X., Cleveland, R.O.: Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging. J. Acoust. Soc. Am 117, 113–123 (2005)CrossRef
Metadata
Title
Local Discontinuous Galerkin Methods for the Khokhlov–Zabolotskaya–Kuznetzov Equation
Authors
Ching-Shan Chou
Weizhou Sun
Yulong Xing
He Yang
Publication date
03-08-2017
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 2-3/2017
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0502-z

Other articles of this Issue 2-3/2017

Journal of Scientific Computing 2-3/2017 Go to the issue

Premium Partner