Skip to main content
Top

2015 | OriginalPaper | Chapter

Local Dynamics and Statistics of Streamline Segments in Fluid Turbulence

Authors : P. Schaefer, M. Gampert, N. Peters

Published in: Fuels From Biomass: An Interdisciplinary Approach

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Based on local extreme points of the absolute value \( u \) of the velocity field \( u_{i} \), streamlines are partitioned into segments as proposed by Wang (J. Fluid. Mech. 648:183–203, 2010). The temporal evolution of the arc length l of streamline segments is analyzed and associated with the motion of the isosurface defined by all points on which the gradient in streamline direction \( \partial u/\partial s \) vanishes. This motion is diffusion controlled for small segments, while large segments are mainly subject to strain and pressure influences. Due to the non-locality of streamline segments, their temporal evolution is not only a result of slow but also of fast changes, which differ by the magnitude of the jump \( \varDelta l \) that occurs within a small time step \( \varDelta t \). The separation of the dynamics into slow and fast changes allows the derivation of a transport equation for the probability density function (pdf) P(l) of the arc length l of streamline segments. While slow changes in the pdf transport equation translate into a convection and a diffusion term when terms up to second order are included, the dynamics of the fast changes yield integral terms. The convection velocity corresponds to the first order jump moment, while the diffusion term includes the second order jump moment. It is theoretically and from DNS data of homogeneous isotropic decaying turbulence at two different Reynolds numbers concluded that the normalized first order jump moment is quasi-universal, while the second order one is proportional to the inverse of the square root of the Taylor based Reynolds number \( Re_{\lambda }^{ - 1/2} \). It’s inclusion thus represents a small correction in the limit of large Reynolds numbers. Numerical solutions of the pdf equation yield a good agreement with the pdf obtained from the DNS data. It is also concluded on theoretical grounds that the mean length of streamline segments scales with the Taylor microscale rather than with any other turbulent length scale, a finding that can be confirmed from the DNS.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Krogstad, P., Davidson, P.A.: Freely-decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417–434 (2011) Krogstad, P., Davidson, P.A.: Freely-decaying, homogeneous turbulence generated by multi-scale grids. J. Fluid Mech. 680, 417–434 (2011)
3.
go back to reference Vassilicos, J., Valente, P.C.: The decay of homogeneous turbulence generated by a class of multi-scale grids. J. Fluid Mech. (to be published) Vassilicos, J., Valente, P.C.: The decay of homogeneous turbulence generated by a class of multi-scale grids. J. Fluid Mech. (to be published)
4.
go back to reference Oberlack, M., Rosteck, A.: New statistical symmetries of the multi-point equations and its importance for turbulent scalign laws. Discrete Continous Dyn. Syst. Ser. S 3, 451–471 (2010)CrossRefMATHMathSciNet Oberlack, M., Rosteck, A.: New statistical symmetries of the multi-point equations and its importance for turbulent scalign laws. Discrete Continous Dyn. Syst. Ser. S 3, 451–471 (2010)CrossRefMATHMathSciNet
5.
go back to reference Rosteck, A.M., Oberlack, M.: Lie algebra of the symmetries of the multi-point equations in statistical turbulence theory. J. Nonlinear Math Phys 18, 251–264 (2011)CrossRefMathSciNet Rosteck, A.M., Oberlack, M.: Lie algebra of the symmetries of the multi-point equations in statistical turbulence theory. J. Nonlinear Math Phys 18, 251–264 (2011)CrossRefMathSciNet
6.
go back to reference von Kármán, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A 164, 192–215 (1938)CrossRef von Kármán, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. Roy. Soc. Lond. A 164, 192–215 (1938)CrossRef
7.
go back to reference Kolmogorov, A.N.: The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941) Kolmogorov, A.N.: The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)
8.
go back to reference Kolmogorov, A.N.: Dissipation of energy under locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)MATH Kolmogorov, A.N.: Dissipation of energy under locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)MATH
9.
go back to reference Corrsin, S.: Random geometric problems suggested by turbulence. In: Rosenblatt, M., van Atta, C. (eds.) Statistical Models and Turbulence, volume 12 of Lecture Notes in Physics, pp. 300–316. Springer, Berlin (1971) Corrsin, S.: Random geometric problems suggested by turbulence. In: Rosenblatt, M., van Atta, C. (eds.) Statistical Models and Turbulence, volume 12 of Lecture Notes in Physics, pp. 300–316. Springer, Berlin (1971)
10.
go back to reference She, Z.S., Jackson, E., Orszag, S.A.: Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226–228 (1990)CrossRef She, Z.S., Jackson, E., Orszag, S.A.: Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226–228 (1990)CrossRef
11.
12.
go back to reference Wang, L., Peters, N.: The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRefMATH Wang, L., Peters, N.: The length scale distribution function of the distance between extremal points in passive scalar turbulence. J. Fluid Mech. 554, 457–475 (2006)CrossRefMATH
13.
go back to reference Gibson, C.H.: Fine structure of scalar fields mixed by turbulence i. zero gradient points and minimal gradient surfaces. Phys. Fluids 11, 2305–2315 (1968)CrossRefMATH Gibson, C.H.: Fine structure of scalar fields mixed by turbulence i. zero gradient points and minimal gradient surfaces. Phys. Fluids 11, 2305–2315 (1968)CrossRefMATH
14.
go back to reference Schaefer, P., Gampert, M., Goebbert, J.H., Wang, L., Peters, N.: Testing of different model equations for the mean dissipation using Kolmogorov flows. Flow Turbul. Combust. 85, 225–243 (2010)CrossRefMATH Schaefer, P., Gampert, M., Goebbert, J.H., Wang, L., Peters, N.: Testing of different model equations for the mean dissipation using Kolmogorov flows. Flow Turbul. Combust. 85, 225–243 (2010)CrossRefMATH
15.
go back to reference Schaefer, P., Gampert, M., Gauding, M., Peters, N., Trevi, C.: \( \tilde{n} \) o. The secondary splitting of zero gradient points in a turbulent scalar field. J. Eng. Math. 71(1), 81–95 (2011) Schaefer, P., Gampert, M., Gauding, M., Peters, N., Trevi, C.: \( \tilde{n} \) o. The secondary splitting of zero gradient points in a turbulent scalar field. J. Eng. Math. 71(1), 81–95 (2011)
16.
go back to reference Schaefer, L., Dierksheide, U., Klaas, M., Schroeder, W.: Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Phys. Fluids 23, 035106 (2010)CrossRef Schaefer, L., Dierksheide, U., Klaas, M., Schroeder, W.: Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry. Phys. Fluids 23, 035106 (2010)CrossRef
17.
go back to reference Rao, P.: Geometry of streamlines in fluid flow theory. Def. Sci. J. 28, 175–178 (1978) Rao, P.: Geometry of streamlines in fluid flow theory. Def. Sci. J. 28, 175–178 (1978)
18.
19.
go back to reference Goto, S., Vassilicos, J.C.: Particle pair diffusion and persistent streamline topology in two-dimensional turbulence. New J. Phys. 6, 65 (2004)CrossRef Goto, S., Vassilicos, J.C.: Particle pair diffusion and persistent streamline topology in two-dimensional turbulence. New J. Phys. 6, 65 (2004)CrossRef
20.
go back to reference Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Monographs on Applied and Computational Mathematics (1999) Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Monographs on Applied and Computational Mathematics (1999)
21.
go back to reference Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000) Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)
22.
go back to reference Wang, L., Peters, N.: Length scale distribution functions and conditional means for various fields in turbulence. J. Fluid Mech. 608, 113–138 (2008)CrossRefMATHMathSciNet Wang, L., Peters, N.: Length scale distribution functions and conditional means for various fields in turbulence. J. Fluid Mech. 608, 113–138 (2008)CrossRefMATHMathSciNet
23.
go back to reference Mansour, N.N., Wray, A.A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6, 808–814 (1993)CrossRef Mansour, N.N., Wray, A.A.: Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6, 808–814 (1993)CrossRef
24.
go back to reference Wang, L.: Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys. Rev. E 79, 046325 (2009) Wang, L.: Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence. Phys. Rev. E 79, 046325 (2009)
25.
go back to reference Gampert, M., Goebbert, J.H., Schaefer, P., Gauding, M., Peters, N., Aldudak, F., Oberlack, M.: Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012 (2011)CrossRef Gampert, M., Goebbert, J.H., Schaefer, P., Gauding, M., Peters, N., Aldudak, F., Oberlack, M.: Extensive strain along gradient trajectories in the turbulent kinetic energy field. New J. Phys. 13, 043012 (2011)CrossRef
Metadata
Title
Local Dynamics and Statistics of Streamline Segments in Fluid Turbulence
Authors
P. Schaefer
M. Gampert
N. Peters
Copyright Year
2015
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-45425-1_10