Skip to main content
Top
Published in: BIT Numerical Mathematics 2/2020

29-11-2019

Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains

Authors: Shweta Srivastava, Sashikumaar Ganesan

Published in: BIT Numerical Mathematics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the numerical analysis of a stabilized finite element scheme with discontinuous Galerkin (dG) discretization in time for the solution of a transient convection–diffusion–reaction equation in time-dependent domains. In particular, the local projection stabilization and the higher order dG time stepping scheme are used for convection dominated problems. Further, an arbitrary Lagrangian–Eulerian formulation is used to handle the time-dependent domain. The stability and error estimates are given for the proposed numerical scheme. The validation of the proposed local projection stabilization scheme with higher order dG time discretization is demonstrated with appropriate numerical examples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetMATH Ahmed, N., Matthies, G., Tobiska, L., Xie, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 200, 1747–1756 (2011)MathSciNetMATH
2.
go back to reference Badia, S., Codina, R.: Analysis of a stabilized finite element approximation of the of the transient convection–diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44(5), 2159–2197 (2006)MathSciNetMATH Badia, S., Codina, R.: Analysis of a stabilized finite element approximation of the of the transient convection–diffusion equation using an ALE framework. SIAM J. Numer. Anal. 44(5), 2159–2197 (2006)MathSciNetMATH
3.
go back to reference Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)MathSciNetMATH Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)MathSciNetMATH
4.
go back to reference Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004) Becker, R., Braack, M.: A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 123–130. Springer, Berlin (2004)
5.
go back to reference Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)MathSciNetMATH Becker, R., Vexler, B.: Optimal control of the convection–diffusion equation using stabilized finite element methods. Numer. Math. 106(3), 349–367 (2007)MathSciNetMATH
6.
go back to reference Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193, 4717–4739 (2004)MathSciNetMATH Boffi, D., Gastaldi, L.: Stability and geometric conservation laws for ALE formulations. Comput. Methods Appl. Mech. Eng. 193, 4717–4739 (2004)MathSciNetMATH
7.
go back to reference Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: stability. SIAM J. Numer. Anal. 51, 577–604 (2013)MathSciNetMATH Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: stability. SIAM J. Numer. Anal. 51, 577–604 (2013)MathSciNetMATH
8.
go back to reference Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: a priori error analysis. Numer. Math. 125, 225–257 (2013)MathSciNetMATH Bonito, A., Kyza, I., Nochetto, R.: Time-discrete higher order ale formulations: a priori error analysis. Numer. Math. 125, 225–257 (2013)MathSciNetMATH
9.
go back to reference Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)MathSciNetMATH Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48(2), 672–687 (2009)MathSciNetMATH
10.
go back to reference Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2–3), 116–147 (2009)MathSciNetMATH Braack, M., Lube, G.: Finite elements with local projection stabilization for incompressible flow problems. J. Comput. Math. 27(2–3), 116–147 (2009)MathSciNetMATH
11.
go back to reference Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetMATH Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetMATH
12.
go back to reference Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199, 1114–1123 (2010)MathSciNetMATH Burman, E.: Consistent SUPG-method for transient transport problems: stability and convergence. Comput. Methods Appl. Mech. Eng. 199, 1114–1123 (2010)MathSciNetMATH
13.
go back to reference Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetMATH Burman, E., Ern, A.: Continuous interior penalty hp-finite element methods for advection and advection–diffusion equations. Math. Comput. 76, 1119–1140 (2007)MathSciNetMATH
14.
go back to reference Burman, E., Fernandez, M., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)MathSciNetMATH Burman, E., Fernandez, M., Hansbo, P.: Continuous interior penalty finite element method for Oseen’s equations. SIAM J. Numer. Anal. 44, 1248–1274 (2006)MathSciNetMATH
15.
go back to reference Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)MathSciNetMATH Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 193, 1437–1453 (2004)MathSciNetMATH
16.
go back to reference Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)MathSciNetMATH Codina, R.: Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Eng. 190, 1579–1599 (2000)MathSciNetMATH
17.
go back to reference Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput. Vis. Sci. 4(3), 167–174 (2002)MathSciNetMATH Codina, R., Blasco, J.: Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput. Vis. Sci. 4(3), 167–174 (2002)MathSciNetMATH
18.
go back to reference Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7(2), 105–131 (1999)MathSciNetMATH Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7(2), 105–131 (1999)MathSciNetMATH
19.
go back to reference Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)MathSciNetMATH Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-FEM. Comput. Methods Appl. Mech. Eng. 193, 4097–4116 (2004)MathSciNetMATH
20.
go back to reference Ganesan, S., Srivastava, S.: ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. Appl. Math. Comput. 303, 128–145 (2017)MathSciNetMATH Ganesan, S., Srivastava, S.: ALE-SUPG finite element method for convection-diffusion problems in time-dependent domains: conservative form. Appl. Math. Comput. 303, 128–145 (2017)MathSciNetMATH
21.
go back to reference Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)MathSciNetMATH Ganesan, S., Tobiska, L.: Stabilization by local projection for convection–diffusion and incompressible flow problems. J. Sci. Comput. 43(3), 326–342 (2010)MathSciNetMATH
22.
go back to reference Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)MathSciNetMATH Gastaldi, L.: A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9, 123–156 (2001)MathSciNetMATH
23.
go back to reference Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)MathSciNetMATH Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999)MathSciNetMATH
24.
go back to reference Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusion equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MATH Hughes, T.J.R., Franca, L.P., Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusion equations. Comput. Methods Appl. Mech. Eng. 73, 173–189 (1989)MATH
25.
go back to reference John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)MathSciNetMATH John, V., Novo, J.: Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion–reaction equations. SIAM J. Numer. Anal. 49(3), 1149–1176 (2011)MathSciNetMATH
26.
go back to reference Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)MathSciNetMATH Knobloch, P.: A generalization of the local projection stabilization for convection–diffusion–reaction equations. SIAM J. Numer. Anal. 48(2), 659–680 (2010)MathSciNetMATH
27.
go back to reference Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)MathSciNetMATH Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math. Model. Numer. Anal. 41, 713–742 (2007)MathSciNetMATH
28.
go back to reference Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)MATH
29.
go back to reference Srivastava, S., Ganesan, S.: On the temporal discretizations of convection dominated convection–diffusion equations in time-dependent domain. Pro-Mathematica 30(59), 99–137 (2018) Srivastava, S., Ganesan, S.: On the temporal discretizations of convection dominated convection–diffusion equations in time-dependent domain. Pro-Mathematica 30(59), 99–137 (2018)
30.
go back to reference Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 3rd edn. Springer, Berlin (2008)MATH Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, 3rd edn. Springer, Berlin (2008)MATH
31.
go back to reference Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)MathSciNetMATH Tobiska, L., Verfürth, R.: Analysis of a streamline diffusion finite element method for the Stokes and Navier–stokes equations. SIAM J. Numer. Anal. 33, 407–421 (1996)MathSciNetMATH
Metadata
Title
Local projection stabilization with discontinuous Galerkin method in time applied to convection dominated problems in time-dependent domains
Authors
Shweta Srivastava
Sashikumaar Ganesan
Publication date
29-11-2019
Publisher
Springer Netherlands
Published in
BIT Numerical Mathematics / Issue 2/2020
Print ISSN: 0006-3835
Electronic ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-019-00783-2

Other articles of this Issue 2/2020

BIT Numerical Mathematics 2/2020 Go to the issue

Premium Partner