Skip to main content
Top
Published in: Mechanics of Composite Materials 5/2021

22-11-2021

Local Stress Distributions in Fiber-Reinforced Composites with Consideration of Thermal Stresses During the Curing Process

Authors: Yangin Li, Dehai Zhang

Published in: Mechanics of Composite Materials | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the mismatch of thermal expansion coefficients and effective moduli between fibers and matrix materials, local stress concentrations arise in composites during the curing process from the high preparation temperature to room temperature. To evaluate the effect of thermal residual stresses on local stress distributions in composites, a high-precision microscale model is established in this paper. The numerical results obtained indicate that the thermal residual stresses cannot give rise to plastic strains in the matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Farsadi and J. J. Hasbestan, “Calculation of flutter and dynamic behavior of advanced composite swept wings with tapered cross section in unsteady incompressible flow,” Mech. Adv. Mater. Struct., 26, No. 4, 314-332 (2019).CrossRef T. Farsadi and J. J. Hasbestan, “Calculation of flutter and dynamic behavior of advanced composite swept wings with tapered cross section in unsteady incompressible flow,” Mech. Adv. Mater. Struct., 26, No. 4, 314-332 (2019).CrossRef
2.
go back to reference S. M. Zaharia, M. A. Pop, and R. Udroiu, “Reliability and lifetime assessment of glider wing’s composite spar through accelerated fatigue life testing,” Mater., 13, No. 10, 2310 (2020).CrossRef S. M. Zaharia, M. A. Pop, and R. Udroiu, “Reliability and lifetime assessment of glider wing’s composite spar through accelerated fatigue life testing,” Mater., 13, No. 10, 2310 (2020).CrossRef
3.
go back to reference F. Kordestani, F. A. Ghasemi, and N. B. M Arab, “Effect of pin geometry on the mechanical strength of friction-stirwelded polypropylene composite plates,” Mech. Compos. Mater., 53, No. 4, 525-532 (2017).CrossRef F. Kordestani, F. A. Ghasemi, and N. B. M Arab, “Effect of pin geometry on the mechanical strength of friction-stirwelded polypropylene composite plates,” Mech. Compos. Mater., 53, No. 4, 525-532 (2017).CrossRef
4.
go back to reference J. J. Ye, H. Cai, L. Liu, Z. Zhai, A. C. Victor, Y. K. Wang, W. Lei, D. M. Yang, X. F. Chen, and J. Q. Ye. “Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part. experimental tests,” Compos. Struct. 202, 113369 (2020). J. J. Ye, H. Cai, L. Liu, Z. Zhai, A. C. Victor, Y. K. Wang, W. Lei, D. M. Yang, X. F. Chen, and J. Q. Ye. “Microscale intrinsic properties of hybrid unidirectional/woven composite laminates: Part. experimental tests,” Compos. Struct. 202, 113369 (2020).
5.
go back to reference M. Ahmadi, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: A hierarchical finite element approach,” Mech. Adv. Mater. Struct., 26, No. 13, 1104-1114 (2019).CrossRef M. Ahmadi, R. Ansari, and M. K. Hassanzadeh-Aghdam, “Low velocity impact analysis of beams made of short carbon fiber/carbon nanotube-polymer composite: A hierarchical finite element approach,” Mech. Adv. Mater. Struct., 26, No. 13, 1104-1114 (2019).CrossRef
6.
go back to reference H. Cai, J. J. Ye, Y. W. Wang, M. Saafi, B. Huang, D. M. Yang, and J. Q. Ye, “An effective microscale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers,” Compos. Struct., 204, 112087 (2020).CrossRef H. Cai, J. J. Ye, Y. W. Wang, M. Saafi, B. Huang, D. M. Yang, and J. Q. Ye, “An effective microscale approach for determining the anisotropy of polymer composites reinforced with randomly distributed short fibers,” Compos. Struct., 204, 112087 (2020).CrossRef
7.
go back to reference J. Fan, L. Cheng, and Y. Hu, “Chemically grafting carbon nanotubes onto carbon fibers for enhancing interfacial properties of fiber metal laminate,” Mater., 13, No. 17, 3813 (2020).CrossRef J. Fan, L. Cheng, and Y. Hu, “Chemically grafting carbon nanotubes onto carbon fibers for enhancing interfacial properties of fiber metal laminate,” Mater., 13, No. 17, 3813 (2020).CrossRef
8.
go back to reference G. V. Krishna, V. Narayanamurthy, and C. Viswanath, “Modeling the buckling characteristics of the metal-FRP hybrid cylinder,” Compos. Struct., 250, 112505 (2020).CrossRef G. V. Krishna, V. Narayanamurthy, and C. Viswanath, “Modeling the buckling characteristics of the metal-FRP hybrid cylinder,” Compos. Struct., 250, 112505 (2020).CrossRef
9.
go back to reference M. Bashiri and V. Toufigh, “Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP),” Eng. Struct., 11150, 223 (2020). M. Bashiri and V. Toufigh, “Numerical and experimental investigation on a BRB confined with partially carbon fiber reinforced polymer (CFRP),” Eng. Struct., 11150, 223 (2020).
10.
go back to reference J. J. Ye, C. C. Chu, H. Cai, X. N. Hou, B. Q. Shi, S. H. Tian, X. F. Chen, and J. Q. Ye, “A multi-scale model for studying failure mechanisms of composite wind turbine blades,” Compos. Struct. 212, 220-229 (2019).CrossRef J. J. Ye, C. C. Chu, H. Cai, X. N. Hou, B. Q. Shi, S. H. Tian, X. F. Chen, and J. Q. Ye, “A multi-scale model for studying failure mechanisms of composite wind turbine blades,” Compos. Struct. 212, 220-229 (2019).CrossRef
11.
go back to reference S. Morganti, M. L. Mazzucchelli, and M. Alvaro, “A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems,” Meccanica, 55, No. 4, 751-764 (2020).CrossRef S. Morganti, M. L. Mazzucchelli, and M. Alvaro, “A numerical application of the Eshelby theory for geobarometry of non-ideal host-inclusion systems,” Meccanica, 55, No. 4, 751-764 (2020).CrossRef
12.
go back to reference S. Lurie, D. Volkov-Bogorodsky, and A. Leontiev, “Eshelby’s inclusion problem in the gradient theory of elasticity: Applications to composite materials,” Int. J. Eng. Sci., 49, No. 12, 1517-1525 (2011).CrossRef S. Lurie, D. Volkov-Bogorodsky, and A. Leontiev, “Eshelby’s inclusion problem in the gradient theory of elasticity: Applications to composite materials,” Int. J. Eng. Sci., 49, No. 12, 1517-1525 (2011).CrossRef
13.
go back to reference P. Cao, F. Jin, and F. G. Shi, “Modified two-phase micromechanical model and generalized self-consistent model for predicting dynamic modulus of asphalt concrete,” Constr Build Mater., 201, 33-41 (2019).CrossRef P. Cao, F. Jin, and F. G. Shi, “Modified two-phase micromechanical model and generalized self-consistent model for predicting dynamic modulus of asphalt concrete,” Constr Build Mater., 201, 33-41 (2019).CrossRef
14.
go back to reference S. Edrisi, N. K. Bidhendi, and M. Haghighi, “A new approach to modeling the effective thermal conductivity of ceramics porous media using a generalized self-consistent method,” Heat Mass Transfer, 53, No. 1, 321-330 (2017).CrossRef S. Edrisi, N. K. Bidhendi, and M. Haghighi, “A new approach to modeling the effective thermal conductivity of ceramics porous media using a generalized self-consistent method,” Heat Mass Transfer, 53, No. 1, 321-330 (2017).CrossRef
15.
go back to reference Y. Min, Z. Dan, J. Chen, X. Hua, and S. Qiang, “Study on the calculation method of stress in strong constraint zones of the concrete structure on the pile foundation based on Eshelby equivalent inclusion theory,” Mater., 13 No. 17, 3815 (2020).CrossRef Y. Min, Z. Dan, J. Chen, X. Hua, and S. Qiang, “Study on the calculation method of stress in strong constraint zones of the concrete structure on the pile foundation based on Eshelby equivalent inclusion theory,” Mater., 13 No. 17, 3815 (2020).CrossRef
16.
go back to reference S. Sidhardh and M.C. Ray, “Size-dependent Eshelby’s ellipsoidal inclusion problem based on generalized first strain gradient elasticity theory,” Math. Mech. Solids, 24, No. 7, 2251-2273(2019).CrossRef S. Sidhardh and M.C. Ray, “Size-dependent Eshelby’s ellipsoidal inclusion problem based on generalized first strain gradient elasticity theory,” Math. Mech. Solids, 24, No. 7, 2251-2273(2019).CrossRef
17.
go back to reference L. D. Nguyen, S. T. Nguyen, and T. H. Tran, “An asymptotic generalized self-consistent scheme for the effective rheological properties of viscoelastic composites,” Mech. Adv. Mater. Struct., 26 No. 23, 1969-1980 (2019).CrossRef L. D. Nguyen, S. T. Nguyen, and T. H. Tran, “An asymptotic generalized self-consistent scheme for the effective rheological properties of viscoelastic composites,” Mech. Adv. Mater. Struct., 26 No. 23, 1969-1980 (2019).CrossRef
18.
go back to reference J. Xiao, B. Xu, and Y. Xu, “The generalized self-consistent micromechanics prediction of the magnetoelectroelastic properties of multi-coated nanocomposites with surface effect,” Smart Mater. Struct., 28, No. 5, 055004 (2019).CrossRef J. Xiao, B. Xu, and Y. Xu, “The generalized self-consistent micromechanics prediction of the magnetoelectroelastic properties of multi-coated nanocomposites with surface effect,” Smart Mater. Struct., 28, No. 5, 055004 (2019).CrossRef
19.
go back to reference S. Lurie, Y. Solyaev, and K. Shramko, “Comparison between the Mori–Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity,” Mech. Mater., 122, 133-144 (2018).CrossRef S. Lurie, Y. Solyaev, and K. Shramko, “Comparison between the Mori–Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity,” Mech. Mater., 122, 133-144 (2018).CrossRef
20.
go back to reference U. S. Gupta, M. Dhamarikar, and A. Dharkar, “Study on the effects of fibre volume percentage on banana-reinforced epoxy composite by finite element method,” Adv. Compos. Hybr. Mater. 2020. U. S. Gupta, M. Dhamarikar, and A. Dharkar, “Study on the effects of fibre volume percentage on banana-reinforced epoxy composite by finite element method,” Adv. Compos. Hybr. Mater. 2020.
21.
go back to reference J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, Micromechanics of Composite Materials – A Generalized Multiscale Analysis Approach. Elsevier Science Pub. Ltd.; 2013. J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, Micromechanics of Composite Materials – A Generalized Multiscale Analysis Approach. Elsevier Science Pub. Ltd.; 2013.
22.
go back to reference J. Aboudi, “The generalized method of cells and high-fidelity generalized method of cells micromechanical models-A review,” Mech. Adv. Mater. Struct., 11, No. 4-5, 329-366 (2004)CrossRef J. Aboudi, “The generalized method of cells and high-fidelity generalized method of cells micromechanical models-A review,” Mech. Adv. Mater. Struct., 11, No. 4-5, 329-366 (2004)CrossRef
23.
go back to reference J. Tsai and Yang-Kai Chi, “Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays,” Compos. Part B-Eng., 39: 714-721(2008).CrossRef J. Tsai and Yang-Kai Chi, “Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays,” Compos. Part B-Eng., 39: 714-721(2008).CrossRef
24.
go back to reference D. Yang, Z. Yang, Z. Zhai, and X. Chen, “Homogenization and localization of ratcheting behavior of composite materials and structures with the thermal residual stress effect,” Mater., 12, 1-20 (2019). D. Yang, Z. Yang, Z. Zhai, and X. Chen, “Homogenization and localization of ratcheting behavior of composite materials and structures with the thermal residual stress effect,” Mater., 12, 1-20 (2019).
25.
go back to reference Q. Chen, W. Tu, and R. Liu, “Parametric multiphysics finite-volume theory for periodic composites with thermo-electroelastic phases,” J. Intel. Mater. Sys. Struct., 4, No. 29, 530-552 (2018).CrossRef Q. Chen, W. Tu, and R. Liu, “Parametric multiphysics finite-volume theory for periodic composites with thermo-electroelastic phases,” J. Intel. Mater. Sys. Struct., 4, No. 29, 530-552 (2018).CrossRef
26.
go back to reference J. Ye, Y. Hong, H. Cai, Y. Wang, Z. Zhai, and B. Shi, “A new three-dimensional parametric FVDAM for investigating the effective elastic moduli of particle-reinforced composites with interphase,” Mech. Adv. Mater. Struct., 26, No. 22, 1870-1880 (2019).CrossRef J. Ye, Y. Hong, H. Cai, Y. Wang, Z. Zhai, and B. Shi, “A new three-dimensional parametric FVDAM for investigating the effective elastic moduli of particle-reinforced composites with interphase,” Mech. Adv. Mater. Struct., 26, No. 22, 1870-1880 (2019).CrossRef
27.
go back to reference B. A. Bednarcyk, J. Aboudi, and S. M. Arnold, “A multiscale two-way thermomechanically coupled micromechanics analysis of the impact response of thermo-elastic-viscoplastic composites,” Int. J. Solids Struct., 61, 228-242 (2019).CrossRef B. A. Bednarcyk, J. Aboudi, and S. M. Arnold, “A multiscale two-way thermomechanically coupled micromechanics analysis of the impact response of thermo-elastic-viscoplastic composites,” Int. J. Solids Struct., 61, 228-242 (2019).CrossRef
28.
go back to reference T. M. Ricks, T. E. Lacy, and B. A. Bednarcyk, “Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques,” Math. Probl. Eng., 2018, 3081078 (2018). T. M. Ricks, T. E. Lacy, and B. A. Bednarcyk, “Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques,” Math. Probl. Eng., 2018, 3081078 (2018).
29.
go back to reference M. A. A. Cavalcante, E. N. Lages, and S. P. C. Marques, “The high-fidelity generalized method of cells with arbitrary cell geometry and its relationship to the parametric finite-volume micromechanics,” Int J Solids Struct., 49, No. 15-16, 2037-2050 (2010).CrossRef M. A. A. Cavalcante, E. N. Lages, and S. P. C. Marques, “The high-fidelity generalized method of cells with arbitrary cell geometry and its relationship to the parametric finite-volume micromechanics,” Int J Solids Struct., 49, No. 15-16, 2037-2050 (2010).CrossRef
30.
go back to reference J. Ye, H. Cai, Y. Wang, Z. Jing, B. Shi, Y. Qiu, and X. F. Chen, “Effective mechanical properties of piezoelectric–piezomagnetic hybrid smart composites,” J. Intel. Mater. Syst. Struct., 29, No. 8, 1711-1723 (2018).CrossRef J. Ye, H. Cai, Y. Wang, Z. Jing, B. Shi, Y. Qiu, and X. F. Chen, “Effective mechanical properties of piezoelectric–piezomagnetic hybrid smart composites,” J. Intel. Mater. Syst. Struct., 29, No. 8, 1711-1723 (2018).CrossRef
31.
go back to reference J. Ye., C. Chu, H. Cai, Y Wang, X. Qiao, Z. Zhai, and X. Chen, “A multi-scale modeling scheme for damage analysis of composite structures based on the High-Fidelity Generalized Method of Cells,” Compos. Struct., 206, 42-53 (2018).CrossRef J. Ye., C. Chu, H. Cai, Y Wang, X. Qiao, Z. Zhai, and X. Chen, “A multi-scale modeling scheme for damage analysis of composite structures based on the High-Fidelity Generalized Method of Cells,” Compos. Struct., 206, 42-53 (2018).CrossRef
32.
go back to reference J. Ye, Y. Wang, Z. Li, M. Saafi, F. Jia, B. Huang, and J. Ye, “Failure analysis of fiber-reinforced composites subjected to coupled thermomechanical loading,” Compos. Struct., 235, 111756 (2020).CrossRef J. Ye, Y. Wang, Z. Li, M. Saafi, F. Jia, B. Huang, and J. Ye, “Failure analysis of fiber-reinforced composites subjected to coupled thermomechanical loading,” Compos. Struct., 235, 111756 (2020).CrossRef
33.
go back to reference T. M. Ricks, T. E. Lacy, and B. A. Bednarcyk, “Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques,” Math. Probl. Eng., 2018, 3081078 (2018). T. M. Ricks, T. E. Lacy, and B. A. Bednarcyk, “Solution of the nonlinear high-fidelity generalized method of cells micromechanics relations via order-reduction techniques,” Math. Probl. Eng., 2018, 3081078 (2018).
34.
go back to reference Q. Chen; X. Chen, and Z. Yang, “Micromechanical modeling of plain woven polymer composites via 3D finite-volume homogenization,” Polym. Compos., 39, No. 9, 3022-3032 (2018).CrossRef Q. Chen; X. Chen, and Z. Yang, “Micromechanical modeling of plain woven polymer composites via 3D finite-volume homogenization,” Polym. Compos., 39, No. 9, 3022-3032 (2018).CrossRef
35.
go back to reference Q. Chen, G. Wang, and X. Chen, “Three-dimensional parametric finite-volume homogenization of periodic materials with multi-scale structural applications,” Int. J. Appl. Mech., 10, No. 4, 1850045 (2018).CrossRef Q. Chen, G. Wang, and X. Chen, “Three-dimensional parametric finite-volume homogenization of periodic materials with multi-scale structural applications,” Int. J. Appl. Mech., 10, No. 4, 1850045 (2018).CrossRef
36.
go back to reference H. Cai, J. Ye, Y. Wang, F. Jia, Y. Hong, S. Tian, and X. Chen, “Matrix failures effect on damage evolution of particle reinforced composites,” Mech. Adv. Mater. Struct., 2019, 1579396 (2019). H. Cai, J. Ye, Y. Wang, F. Jia, Y. Hong, S. Tian, and X. Chen, “Matrix failures effect on damage evolution of particle reinforced composites,” Mech. Adv. Mater. Struct., 2019, 1579396 (2019).
37.
go back to reference G. L’vov and I. Kostromitskaya, “Numerical modeling of plastic deformation of unidirectionally reinforced composites,” Mech. Compos. Mater., 56, No. 1, 1-14 (2020). G. L’vov and I. Kostromitskaya, “Numerical modeling of plastic deformation of unidirectionally reinforced composites,” Mech. Compos. Mater., 56, No. 1, 1-14 (2020).
38.
go back to reference J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, The Generalized Method of Cells Micromechanics. Micromechanics of Composite Materials-A Generalized Multiscale Analysis Approach. Oxford, Kidlington (2013). J. Aboudi, S. M. Arnold, and B. A. Bednarcyk, The Generalized Method of Cells Micromechanics. Micromechanics of Composite Materials-A Generalized Multiscale Analysis Approach. Oxford, Kidlington (2013).
39.
go back to reference P. D. Soden, M. J. Hinton, and A. S. Kaddourm, “Lamina properties, lay-up configurations and loading conditions for a range of fiber-reinforced composite laminates,” Compos. Sci. Technol., 58, 1011-1022 (1998).CrossRef P. D. Soden, M. J. Hinton, and A. S. Kaddourm, “Lamina properties, lay-up configurations and loading conditions for a range of fiber-reinforced composite laminates,” Compos. Sci. Technol., 58, 1011-1022 (1998).CrossRef
40.
go back to reference L. Yu, H. Sui, and W. Liu, “A yield criterion for porous crystalline materials with inner pressure,” Int. J. Solids Struct., 202, 511-520 (2020).CrossRef L. Yu, H. Sui, and W. Liu, “A yield criterion for porous crystalline materials with inner pressure,” Int. J. Solids Struct., 202, 511-520 (2020).CrossRef
Metadata
Title
Local Stress Distributions in Fiber-Reinforced Composites with Consideration of Thermal Stresses During the Curing Process
Authors
Yangin Li
Dehai Zhang
Publication date
22-11-2021
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 5/2021
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-021-09987-6

Other articles of this Issue 5/2021

Mechanics of Composite Materials 5/2021 Go to the issue

Premium Partners