Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

06-12-2019 | Issue 2/2020

Mobile Networks and Applications 2/2020

Long-Term and Multi-Step Ahead Call Traffic Forecasting with Temporal Features Mining

Journal:
Mobile Networks and Applications > Issue 2/2020
Authors:
Bin Cao, Jiawei Wu, Longchun Cao, Yueshen Xu, Jing Fan
Important notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

An accurate call traffic forecasting can help the call center to schedule and manage its employees more scientifically. Meanwhile, to meet the needs that some tasks in the call center require the prediction of call traffic in different time buckets for a future long term, it is necessary to forecast the call traffic in a long-term and multi-step way. However, existing forecasting methods cannot solve this problem as (1) Most existing methods merely focus on short-term forecasting for the next hour or the next day. (2) The temporal features of call traffic are ignored, which leads to a lower accuracy in long-term forecasting. Hence, in this paper, we propose a holistic solution for forecasting long-term multi-step ahead call traffic. In our method, we give a categorized way for temporal features by studying the call traffic data. After data preprocessing, we develop an extraction method for temporal features extraction for training the forecasting model. We propose two forecasting strategies based on taking different types of features as input. Experimental results on the real-world call traffic dataset show the effectiveness of our solution, including data preprocessing, temporal features mining, and the forecasting model.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2020

Mobile Networks and Applications 2/2020 Go to the issue