Skip to main content
Top

2017 | OriginalPaper | Chapter

Lossy Mode Resonance Based Fiber Optic Sensors

Authors : Nidhi Paliwal, Joseph John

Published in: Fiber Optic Sensors

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the past couple of years, lossy mode resonance (LMR) phenomena has attracted the attention of researchers with its promising benefits in the field of fiber optic sensing. LMR based sensors have become a useful tool in sensing applications ranging from physical sensing to biosensing in a short span of time. In addition to sensing, LMR phenomena can also be utilized as wavelength filters for communication purposes. LMR based sensors are able to work independently of the specific polarization of light for sensing operations. Also, unlike evanescent wave and surface plasmon resonance (SPR) based sensors, the sensitivity of these LMR sensors does not get affected by the geometrical parameters of fiber and primarily depends on the thickness of thin film material. Till date, various geometries of fiber probes such as straight, D-shaped, tapered etc., have been explored. Bending and tapering of multimode fiber based LMR sensors improve the detection accuracy without affecting their sensitivity. However, in single mode fiber based LMR sensors the side polishing and tapering of fibers improve both the detection accuracy and sensitivity. Another method to improve the sensitivity is by using two LMR supporting thin film layers of higher refractive index instead of one. This chapter describes the theory and developments made in the field of LMR based fiber optic sensors for various sensing applications. Finally, future scope of the LMR sensing technology and possible research in this emerging area are suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Kersey, A. Dandridge, Applications of fiber-optic sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(1), 137–143 (1990)CrossRef A. Kersey, A. Dandridge, Applications of fiber-optic sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 13(1), 137–143 (1990)CrossRef
2.
go back to reference B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)CrossRef B. Culshaw, A. Kersey, Fiber-optic sensing: a historical perspective. J. Lightwave Technol. 26(9), 1064–1078 (2008)CrossRef
3.
go back to reference R. Bogue, Fibre optic sensors: a review of today’s applications. Sens. Rev. 31(4), 304–309 (2011)CrossRef R. Bogue, Fibre optic sensors: a review of today’s applications. Sens. Rev. 31(4), 304–309 (2011)CrossRef
4.
go back to reference B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)CrossRef B. Lee, S. Roh, J. Park, Current status of micro- and nano-structured optical fiber sensors. Opt. Fiber Technol. 15(3), 209–221 (2009)CrossRef
5.
go back to reference T. Batchman, G. McWright, Mode coupling between dielectric and semiconductor planar waveguides. IEEE Trans. Microwave Theory Tech. 30(4), 628–634 (1982)CrossRef T. Batchman, G. McWright, Mode coupling between dielectric and semiconductor planar waveguides. IEEE Trans. Microwave Theory Tech. 30(4), 628–634 (1982)CrossRef
6.
go back to reference M. Marciniak, J. Grzegorzewski, M. Szustakowski, Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. Optoelectr. IEE Proc. J. 140(4), 247–252 (1993)CrossRef M. Marciniak, J. Grzegorzewski, M. Szustakowski, Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer. Optoelectr. IEE Proc. J. 140(4), 247–252 (1993)CrossRef
7.
go back to reference T. Takano, J. Hamasaki, Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics. IEEE J. Quantum Electr. 8(2), 206–212 (1972)CrossRef T. Takano, J. Hamasaki, Propagating modes of a metal-clad-dielectric-slab waveguide for integrated optics. IEEE J. Quantum Electr. 8(2), 206–212 (1972)CrossRef
8.
go back to reference F. Yang, J.R. Sambles, Determination of the optical permittivity and thickness of absorbing films using long range modes. J. Modern Opt. 44(6), 1155–1163 (1997)CrossRef F. Yang, J.R. Sambles, Determination of the optical permittivity and thickness of absorbing films using long range modes. J. Modern Opt. 44(6), 1155–1163 (1997)CrossRef
9.
go back to reference J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B: Chem. 54, 3–15 (1999)CrossRef J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review. Sens. Actuators B: Chem. 54, 3–15 (1999)CrossRef
10.
go back to reference A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens. J. IEEE 7(8), 1118–1129 (2007)CrossRef A.K. Sharma, R. Jha, B.D. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. Sens. J. IEEE 7(8), 1118–1129 (2007)CrossRef
11.
go back to reference A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sens. Actuators B: Chem. 125(2), 688–703 (2007)CrossRef A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sens. Actuators B: Chem. 125(2), 688–703 (2007)CrossRef
12.
go back to reference X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013)CrossRef X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal. Chem. 85(2), 487–508 (2013)CrossRef
13.
go back to reference I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3), 214–242 (2008)CrossRef I. Abdulhalim, M. Zourob, A. Lakhtakia, Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3), 214–242 (2008)CrossRef
14.
go back to reference I.D. Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. 28(1), 111–117 (2010)CrossRef I.D. Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. 28(1), 111–117 (2010)CrossRef
15.
go back to reference C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B: Chem. 146(1), 414–417 (2010)CrossRef C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Tunable humidity sensor based on ITO-coated optical fiber. Sens. Actuators B: Chem. 146(1), 414–417 (2010)CrossRef
16.
go back to reference D. Kaur, V. Sharma, A. Kapoor, High sensitivity lossy mode resonance sensors. Sens. Actuators B: Chem. 198, 366–376 (2014)CrossRef D. Kaur, V. Sharma, A. Kapoor, High sensitivity lossy mode resonance sensors. Sens. Actuators B: Chem. 198, 366–376 (2014)CrossRef
17.
go back to reference M. Hernaez, I.D. Villar, C.R. Zamarreno, F.J. Arregui, I.R. Matias, Optical fiber refractometers based on lossy mode resonances supported by TiO\(_2\) coatings. Appl. Opt. 49, 3980–3985 (2010)CrossRef M. Hernaez, I.D. Villar, C.R. Zamarreno, F.J. Arregui, I.R. Matias, Optical fiber refractometers based on lossy mode resonances supported by TiO\(_2\) coatings. Appl. Opt. 49, 3980–3985 (2010)CrossRef
18.
go back to reference I.D. Villar, C.R. Zamarreno, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 12(9), 095503 (2010)CrossRef I.D. Villar, C.R. Zamarreno, P. Sanchez, M. Hernaez, C.F. Valdivielso, F.J. Arregui, I.R. Matias, Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers. J. Opt. 12(9), 095503 (2010)CrossRef
19.
go back to reference C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B: Chem. 155(1), 290–297 (2011)CrossRef C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B: Chem. 155(1), 290–297 (2011)CrossRef
20.
go back to reference R.F. Carson, T.E. Batchman, Multimode phenomena in semiconductor-clad dielectric optical waveguide structures. Appl. Opt. 29(18), 2769–2780 (1990)CrossRef R.F. Carson, T.E. Batchman, Multimode phenomena in semiconductor-clad dielectric optical waveguide structures. Appl. Opt. 29(18), 2769–2780 (1990)CrossRef
21.
go back to reference I.D. Villar, I.R. Matias, F.J. Arregui, M. Achaerandio, Nanodeposition of materials with complex refractive index in long-period fiber gratings. J. Lightwave Technol. 23(12), 4192–4199 (2005)CrossRef I.D. Villar, I.R. Matias, F.J. Arregui, M. Achaerandio, Nanodeposition of materials with complex refractive index in long-period fiber gratings. J. Lightwave Technol. 23(12), 4192–4199 (2005)CrossRef
22.
go back to reference E. Kretschmann, H. Reather, Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung 23, 21352136 (1968) E. Kretschmann, H. Reather, Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift fur Naturforschung 23, 21352136 (1968)
23.
go back to reference I.D. Villar, C.R. Zamarreno, M. Hernaez, P. Sanchez, F.J. Arregui, I.R. Matias, Generation of surface plasmon resonance and lossy mode resonance by thermal treatment of ITO thin-films. Opt. Laser Technol. 69, 1–7 (2015)CrossRef I.D. Villar, C.R. Zamarreno, M. Hernaez, P. Sanchez, F.J. Arregui, I.R. Matias, Generation of surface plasmon resonance and lossy mode resonance by thermal treatment of ITO thin-films. Opt. Laser Technol. 69, 1–7 (2015)CrossRef
24.
go back to reference J. Chilwell, I. Hodgkinson, Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A 1(7), 742–753 (1984)CrossRef J. Chilwell, I. Hodgkinson, Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides. J. Opt. Soc. Am. A 1(7), 742–753 (1984)CrossRef
25.
go back to reference G.P. Agarwal, Nonlinear Fiber Optics, 3rd edn. (Academic, New York, 2001) G.P. Agarwal, Nonlinear Fiber Optics, 3rd edn. (Academic, New York, 2001)
26.
go back to reference C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, ITO coated optical fiber refractometers based on resonances in the infrared region. Sens. J. IEEE 10(2), 365–366 (2010)CrossRef C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, ITO coated optical fiber refractometers based on resonances in the infrared region. Sens. J. IEEE 10(2), 365–366 (2010)CrossRef
27.
go back to reference I.D. Villar, M. Hernaez, C.R. Zamarreno, P. Sanchez, C. Fernandez-Valdivielso, F.J. Arregui, I.R. Matias, Design rules for lossy mode resonance based sensors. Appl. Opt. 51(19), 4298–4307 (2012)CrossRef I.D. Villar, M. Hernaez, C.R. Zamarreno, P. Sanchez, C. Fernandez-Valdivielso, F.J. Arregui, I.R. Matias, Design rules for lossy mode resonance based sensors. Appl. Opt. 51(19), 4298–4307 (2012)CrossRef
28.
go back to reference S.H. Brewer, S. Franzen, Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces, correlation of reflectivity, skin depth, and plasmon frequency with conductivity. J. Alloys Compd. 338, 73–79 (2002)CrossRef S.H. Brewer, S. Franzen, Optical properties of indium tin oxide and fluorine-doped tin oxide surfaces, correlation of reflectivity, skin depth, and plasmon frequency with conductivity. J. Alloys Compd. 338, 73–79 (2002)CrossRef
29.
go back to reference I. Hamberg, A. Hjortsberg, C. Granqvist, High quality transparent heat reflectors of reactively evaporated indium tin oxide. Appl. Phys. Lett. 40(5), 362–364 (1982)CrossRef I. Hamberg, A. Hjortsberg, C. Granqvist, High quality transparent heat reflectors of reactively evaporated indium tin oxide. Appl. Phys. Lett. 40(5), 362–364 (1982)CrossRef
30.
go back to reference S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, H. Bernitzki, Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335, 1–5 (1998)CrossRef S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, H. Bernitzki, Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation. Thin Solid Films 335, 1–5 (1998)CrossRef
31.
go back to reference A. Socorro, J. Corres, I.D. Villar, F.J. Arregui, I.R. Matias, Fiber-optic biosensor based on lossy mode resonances. Sens. Actuators B: Chem. 174, 263–269 (2012)CrossRef A. Socorro, J. Corres, I.D. Villar, F.J. Arregui, I.R. Matias, Fiber-optic biosensor based on lossy mode resonances. Sens. Actuators B: Chem. 174, 263–269 (2012)CrossRef
32.
go back to reference P. Sanchez, C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Considerations for lossy-mode resonance-based optical fiber sensor. Sens. J. IEEE 13(4), 1167–1171 (2013)CrossRef P. Sanchez, C.R. Zamarreno, M. Hernaez, I.D. Villar, I.R. Matias, F.J. Arregui, Considerations for lossy-mode resonance-based optical fiber sensor. Sens. J. IEEE 13(4), 1167–1171 (2013)CrossRef
33.
go back to reference C.R. Zamarreno, P. Zubiate, M. Sagues, I.R. Matias, F.J. Arregui, Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38(14), 2481–2483 (2013)CrossRef C.R. Zamarreno, P. Zubiate, M. Sagues, I.R. Matias, F.J. Arregui, Experimental demonstration of lossy mode resonance generation for transverse-magnetic and transverse-electric polarizations. Opt. Lett. 38(14), 2481–2483 (2013)CrossRef
34.
go back to reference C. Elosua, I. Vidondo, F.J. Arregui, C. Bariain, A. Luquin, M. Laguna, I.R. Matias, Lossy mode resonance optical fiber sensor to detect organic vapors. Sens. Actuators B: Chem. 187, 65–71 (2013)CrossRef C. Elosua, I. Vidondo, F.J. Arregui, C. Bariain, A. Luquin, M. Laguna, I.R. Matias, Lossy mode resonance optical fiber sensor to detect organic vapors. Sens. Actuators B: Chem. 187, 65–71 (2013)CrossRef
35.
go back to reference P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens. Actuators B: Chem. 187, 40–44 (2013)CrossRef P.J. Rivero, A. Urrutia, J. Goicoechea, I.R. Matias, F.J. Arregui, A lossy mode resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing. Sens. Actuators B: Chem. 187, 40–44 (2013)CrossRef
36.
go back to reference N. Paliwal, J. John, Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO\(_2\) bilayers. Appl. Opt. 53, 3241–3246 (2014)CrossRef N. Paliwal, J. John, Theoretical modeling of lossy mode resonance based refractive index sensors with ITO/TiO\(_2\) bilayers. Appl. Opt. 53, 3241–3246 (2014)CrossRef
37.
go back to reference C.R. Zamarreno, I. Ardaiz, L. Ruete, F. Munoz, I.R. Matias, F.J. Arregui, C-reactive protein aptasensor for early sepsis diagnosis by means of an optical fiber device. Sens. IEEE 2013, 1–4 (2013) C.R. Zamarreno, I. Ardaiz, L. Ruete, F. Munoz, I.R. Matias, F.J. Arregui, C-reactive protein aptasensor for early sepsis diagnosis by means of an optical fiber device. Sens. IEEE 2013, 1–4 (2013)
38.
go back to reference L. Razquin, C.R. Zamarreno, F. Munoz, I.R. Matias, F.J. Arregui, Thrombin detection by means of an aptamer based sensitive coating fabricated onto LMR-based optical fiber refractometer. Sens. IEEE 2012, 1–4 (2012) L. Razquin, C.R. Zamarreno, F. Munoz, I.R. Matias, F.J. Arregui, Thrombin detection by means of an aptamer based sensitive coating fabricated onto LMR-based optical fiber refractometer. Sens. IEEE 2012, 1–4 (2012)
39.
go back to reference N. Paliwal, J. John, Sensitivity enhancement of aluminium doped zinc oxide (AZO) coated lossy mode resonance (LMR) fiber optic sensors using additional layer of oxides. Frontiers in Optics. Optical Society of America, p. JTu3A.40 (2014) N. Paliwal, J. John, Sensitivity enhancement of aluminium doped zinc oxide (AZO) coated lossy mode resonance (LMR) fiber optic sensors using additional layer of oxides. Frontiers in Optics. Optical Society of America, p. JTu3A.40 (2014)
40.
go back to reference A. Socorro, I.D. Villar, J. Corres, F.J. Arregui, I.R. Matias, Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B: Chem. 200, 53–60 (2014)CrossRef A. Socorro, I.D. Villar, J. Corres, F.J. Arregui, I.R. Matias, Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sens. Actuators B: Chem. 200, 53–60 (2014)CrossRef
41.
go back to reference N. Paliwal, J. John, Theoretical modelling of lossy mode resonance (LMR) based fiber optic temperature sensor utilizing TiO\(_2\) sensing layer. in 12th International Conference on Fiber Optics and Photonics (Optical Society of America, 2014), p. M4A.22 N. Paliwal, J. John, Theoretical modelling of lossy mode resonance (LMR) based fiber optic temperature sensor utilizing TiO\(_2\) sensing layer. in 12th International Conference on Fiber Optics and Photonics (Optical Society of America, 2014), p. M4A.22
42.
go back to reference S.K. Srivastava, B.D. Gupta, Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor. J. Opt. Soc. Am. A 27(7), 1743–1749 (2010)MathSciNetCrossRef S.K. Srivastava, B.D. Gupta, Simulation of a localized surface-plasmon-resonance-based fiber optic temperature sensor. J. Opt. Soc. Am. A 27(7), 1743–1749 (2010)MathSciNetCrossRef
43.
go back to reference N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, P. Lu, Bending insensitive sensors for strain and temperature measurements with bragg gratings in bragg fibers. Opt. Exp. 19(15), 13 880–13 891 (2011) N. Liu, Y. Li, Y. Wang, H. Wang, W. Liang, P. Lu, Bending insensitive sensors for strain and temperature measurements with bragg gratings in bragg fibers. Opt. Exp. 19(15), 13 880–13 891 (2011)
44.
go back to reference P. Zubiate, C.R. Zamarreno, I.D. Villar, I.R. Matias, F.J. Arregui, High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Exp. 23(6), 8045–8050 (2015)CrossRef P. Zubiate, C.R. Zamarreno, I.D. Villar, I.R. Matias, F.J. Arregui, High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Opt. Exp. 23(6), 8045–8050 (2015)CrossRef
45.
go back to reference N. Paliwal, J. John, Lossy mode resonance (LMR) based fiber optic sensors: a review. Sens. J. IEEE 15(10), 5361–5371 (2015)CrossRef N. Paliwal, J. John, Lossy mode resonance (LMR) based fiber optic sensors: a review. Sens. J. IEEE 15(10), 5361–5371 (2015)CrossRef
Metadata
Title
Lossy Mode Resonance Based Fiber Optic Sensors
Authors
Nidhi Paliwal
Joseph John
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-42625-9_2