Skip to main content
Top

2019 | OriginalPaper | Chapter

Low Boom Supersonic Aircraft Configuration Optimization Using Inverse Design Method

Authors : Yidian Zhang, Jiangtao Huang, Zhenghong Gao

Published in: The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mitigation of sonic boom to an acceptable stage is a key point for the next generation of supersonic transports. Meanwhile, designing a supersonic aircraft with an ideal ground signature is always the focus of research on sonic boom reduction. This paper presents an inverse design approach to optimize the near-field signature of an aircraft making it close to the shaped ideal ground signature after the propagation in the atmosphere. Using the proper orthogonal decomposition (POD) method, a guessed input of augmented Burgers equation is inversely achieved. By multiple POD iterations, the guessed ground signatures successively approach the target ground signature until the convergence criteria is reached. Finally, the corresponding equivalent area distribution is calculated from the optimal near-field signature through the classical Whitham F-function theory. To validate this method, an optimization example of Lockheed Martin 1021 is demonstrated. The modified configuration has a fully shaped ground signature and achieves a drop of perceived loudness by 7.94 PLdB. Finally, a non-physical ground signature is set as the target to test the robustness of this inverse design method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alonso JJ, Colonno MR (2012) Multidisciplinary optimization with applications to sonic-boom minimization. Ann Rev Fluid Mech 44(44):505–526MathSciNetCrossRef Alonso JJ, Colonno MR (2012) Multidisciplinary optimization with applications to sonic-boom minimization. Ann Rev Fluid Mech 44(44):505–526MathSciNetCrossRef
2.
go back to reference Pilon AR (2007) Spectrally accurate prediction of sonic boom signals. AIAA J 45(9):2149–2156CrossRef Pilon AR (2007) Spectrally accurate prediction of sonic boom signals. AIAA J 45(9):2149–2156CrossRef
3.
go back to reference George AR, Plotkin KJ (1969) Sonic boom waveforms and amplitudes in a real atmosphere. AIAA J 7(10):1978–1981CrossRef George AR, Plotkin KJ (1969) Sonic boom waveforms and amplitudes in a real atmosphere. AIAA J 7(10):1978–1981CrossRef
4.
go back to reference Plotkin KJ (2002) State of the art of sonic boom modeling. J Acoust Soc Am 111(2):530–536CrossRef Plotkin KJ (2002) State of the art of sonic boom modeling. J Acoust Soc Am 111(2):530–536CrossRef
5.
go back to reference George AR, Seebass R (1971) Sonic boom minimization including both front and rear shocks. AIAA J 9(10)CrossRef George AR, Seebass R (1971) Sonic boom minimization including both front and rear shocks. AIAA J 9(10)CrossRef
6.
go back to reference Makino Y, Aoyama T, Iwamiya T, Watanuki T, Kubota H (2015) Numerical optimization of fuselage geometry to modify sonic-boom signature. J Aircr 36(4):668–674CrossRef Makino Y, Aoyama T, Iwamiya T, Watanuki T, Kubota H (2015) Numerical optimization of fuselage geometry to modify sonic-boom signature. J Aircr 36(4):668–674CrossRef
8.
go back to reference Cheung SH, Edwards TA, Lawrence SL (1992) Application of computational fluid dynamics to sonic boom near- and mid-field prediction. J Aircr 29(5)CrossRef Cheung SH, Edwards TA, Lawrence SL (1992) Application of computational fluid dynamics to sonic boom near- and mid-field prediction. J Aircr 29(5)CrossRef
9.
go back to reference Thomas CL (1972) Extrapolation of sonic boom pressure signatures by the waveform parameter method. NASA TN D-6832 Thomas CL (1972) Extrapolation of sonic boom pressure signatures by the waveform parameter method. NASA TN D-6832
10.
go back to reference Cleveland RO (1995) Propagation of sonic booms through a real, stratified atmosphere. University of Texas at Austin, Austin (1995) Cleveland RO (1995) Propagation of sonic booms through a real, stratified atmosphere. University of Texas at Austin, Austin (1995)
11.
go back to reference Pawlowski JW, Graham DH et al (2005) Origins and overview of the shaped sonic boom demonstration program. In: 43rd AIAA aerospace sciences meeting and exhibit - Meeting Papers 2005 Pawlowski JW, Graham DH et al (2005) Origins and overview of the shaped sonic boom demonstration program. In: 43rd AIAA aerospace sciences meeting and exhibit - Meeting Papers 2005
12.
go back to reference Aftosmis M, Nemec M, Cliff S (eds) (2013) Adjoint-based low-boom design with Cart3D (Invited) Aftosmis M, Nemec M, Cliff S (eds) (2013) Adjoint-based low-boom design with Cart3D (Invited)
13.
go back to reference Nadarajah S, Jameson A, Alonso J (2002) Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow. AIAA Paper 40(10):1954–1960CrossRef Nadarajah S, Jameson A, Alonso J (2002) Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow. AIAA Paper 40(10):1954–1960CrossRef
14.
go back to reference Rallabhandi S (ed) (2013) Sonic boom adjoint methodology and its applications. In: AIAA applied aerodynamics conference Rallabhandi S (ed) (2013) Sonic boom adjoint methodology and its applications. In: AIAA applied aerodynamics conference
15.
go back to reference Rallabhandi SK, Nielsen EJ, Diskin B (2012) Sonic-boom mitigation through aircraft design and adjoint methodology. J Aircr 51(2):502–510CrossRef Rallabhandi SK, Nielsen EJ, Diskin B (2012) Sonic-boom mitigation through aircraft design and adjoint methodology. J Aircr 51(2):502–510CrossRef
16.
go back to reference Rallabhandi SK (2013) Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas. J Aircr 51(6) Rallabhandi SK (2013) Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas. J Aircr 51(6)
17.
go back to reference Seebass R, George AR (1972) Sonic-boom minimization. J Acoust Soc Am 51(49):72 Seebass R, George AR (1972) Sonic-boom minimization. J Acoust Soc Am 51(49):72
18.
go back to reference Li W, Rallabhandi S (2014) Inverse design of low-boom supersonic concepts using reversed equivalent-area targets. J Aircr 51(1):29–36CrossRef Li W, Rallabhandi S (2014) Inverse design of low-boom supersonic concepts using reversed equivalent-area targets. J Aircr 51(1):29–36CrossRef
19.
go back to reference Kirsch A (2011) An introduction to the mathematical theory of inverse problems. Springer, New York, pp 585–586CrossRef Kirsch A (2011) An introduction to the mathematical theory of inverse problems. Springer, New York, pp 585–586CrossRef
20.
go back to reference Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial & Applied Mathematics, Philadelphia PA xii, p 342 Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial & Applied Mathematics, Philadelphia PA xii, p 342
21.
22.
go back to reference Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. Joptama 4(3):519 Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. Joptama 4(3):519
23.
go back to reference Fukunaga K (1972) Introduction to statistical pattern recognition, 2nd ed. Academic Press, pp 2133–2143 Fukunaga K (1972) Introduction to statistical pattern recognition, 2nd ed. Academic Press, pp 2133–2143
24.
go back to reference Han S, Feeny B (2003) Application of proper orthogonal decomposition to structural vibration analysis. Mech Syst Sig Process 17(5):989–1001CrossRef Han S, Feeny B (2003) Application of proper orthogonal decomposition to structural vibration analysis. Mech Syst Sig Process 17(5):989–1001CrossRef
25.
go back to reference Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330CrossRef Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330CrossRef
26.
go back to reference Willcox K (2004) Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput Fluids 35(2):208–226CrossRef Willcox K (2004) Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput Fluids 35(2):208–226CrossRef
27.
go back to reference Tan BT, Damodaran M, Willcox KE (2004) Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J 42(8):1505–1516CrossRef Tan BT, Damodaran M, Willcox KE (2004) Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA J 42(8):1505–1516CrossRef
28.
go back to reference Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25(1):539–575MathSciNetCrossRef Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25(1):539–575MathSciNetCrossRef
29.
go back to reference Stein ML (2006) Interpolation of spatial data, vol 45(36). Springer, pp 238–240 Stein ML (2006) Interpolation of spatial data, vol 45(36). Springer, pp 238–240
30.
go back to reference Venturi D, Karniadakis GE (2004) Gappy data and reconstruction procedures for flow past a cylinder. J Fluid Mech 519(519):315–336MathSciNetCrossRef Venturi D, Karniadakis GE (2004) Gappy data and reconstruction procedures for flow past a cylinder. J Fluid Mech 519(519):315–336MathSciNetCrossRef
31.
go back to reference Sirovich L (1987) Turbulence and the dynamics of coherent structures. 1 - coherent structures. 2 - symmetries and transformations. 3 - dynamics and scaling. Q Appl Math 45(3):561–571CrossRef Sirovich L (1987) Turbulence and the dynamics of coherent structures. 1 - coherent structures. 2 - symmetries and transformations. 3 - dynamics and scaling. Q Appl Math 45(3):561–571CrossRef
32.
go back to reference Rallabhandi SK, Loubeau A (2017) Propagation summary of the second AIAA sonic boom prediction workshop. In: AIAA applied aerodynamics conference, Grapevine, USA, 9–13 January 2017 Rallabhandi SK, Loubeau A (2017) Propagation summary of the second AIAA sonic boom prediction workshop. In: AIAA applied aerodynamics conference, Grapevine, USA, 9–13 January 2017
33.
go back to reference Lee YS, Hamilton MF (1995) Time-domain modeling of pulsed finite-amplitude sound beams. J Acoust Soc Am 97(2):906–917CrossRef Lee YS, Hamilton MF (1995) Time-domain modeling of pulsed finite-amplitude sound beams. J Acoust Soc Am 97(2):906–917CrossRef
34.
go back to reference Rallabhandi S (ed) (2013) Advanced sonic boom prediction using augmented burger’s equation. In: AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition Rallabhandi S (ed) (2013) Advanced sonic boom prediction using augmented burger’s equation. In: AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition
35.
go back to reference Plotkin K, Sizov N, Morgenstern J (eds) (2006) Examination of sonic boom minimization experienced indoors. In: AIAA aerospace sciences meeting and exhibit Plotkin K, Sizov N, Morgenstern J (eds) (2006) Examination of sonic boom minimization experienced indoors. In: AIAA aerospace sciences meeting and exhibit
36.
go back to reference Stevens SS (1972) Perceived level of noise by Mark VII and decibels (E). Jacoustsocam 51(2B):575–601 Stevens SS (1972) Perceived level of noise by Mark VII and decibels (E). Jacoustsocam 51(2B):575–601
37.
go back to reference Shepherd KP, Sullivan BM (1991) A loudness calculation procedure applied to shaped sonic booms: NASA langley technical report server Shepherd KP, Sullivan BM (1991) A loudness calculation procedure applied to shaped sonic booms: NASA langley technical report server
38.
go back to reference Plotkin K (ed) (1989) Review of sonic boom theory. In: American institute of aeronautics and astronautics conference Plotkin K (ed) (1989) Review of sonic boom theory. In: American institute of aeronautics and astronautics conference
39.
go back to reference Huan Z, Zhenghong G, Fang X, Yidian Z (2018) Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng Huan Z, Zhenghong G, Fang X, Yidian Z (2018) Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng
40.
go back to reference Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp Sci Technol 68:530–542CrossRef Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty. Aerosp Sci Technol 68:530–542CrossRef
Metadata
Title
Low Boom Supersonic Aircraft Configuration Optimization Using Inverse Design Method
Authors
Yidian Zhang
Jiangtao Huang
Zhenghong Gao
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-3305-7_82

Premium Partner