Skip to main content
Top

2022 | OriginalPaper | Chapter

8. Low-Energy Ion Beam Bombardment-Induced Nanostructures

Author : Bernd Rauschenbach

Published in: Low-Energy Ion Irradiation of Materials

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An attractive ion beam method is the possibility of spontaneous formation of ordered surface patterns in the form of nanodots/nanoholes or sinusoidal modulations of the surface (ripples) in the nanometer range. This method, based on self-organization, is characterized by the interplay of two low-energy processes induced by ion beams. The ion bombardment roughens the surface, while relaxation processes such as surface diffusion or/and beam-induced viscous flow smooth the surface. In this chapter, the formation of nanoripples with and without metallic contaminants is presented and the dependence of ripple formation on temperature, ion incidence angle, ion energy and co-deposited metal concentration is discussed. Bradley and Harper have proposed a continuum theory to describe the topography evolution and pattern formation. This theory is based on curvature-dependent sputtering, which is proportional to the locally deposited energy. In the following, it will be shown that, on the one hand, this theoretical concept can be extended by introducing nonlinear terms and, on the other hand, that the formation of surface patterns can be also explained by a directional redistribution of mass. Finally, the great application potential of this technology for effective, low-cost and scalable patterning of large areas of all materials is demonstrated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.L. Chan, E. Chason, Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 101, 121301 (2007) W.L. Chan, E. Chason, Making waves: kinetic processes controlling surface evolution during low energy ion sputtering. J. Appl. Phys. 101, 121301 (2007)
2.
go back to reference B. Ziberi, M. Cornejo, F. Frost, B. Rauschenbach, Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. J. Phys. Condens. Matter. 21, 224003 (2009) B. Ziberi, M. Cornejo, F. Frost, B. Rauschenbach, Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering. J. Phys. Condens. Matter. 21, 224003 (2009)
3.
go back to reference T.K. Chini, D.P. Datta, S.R. Bhattacharyya, Ripple formation on silicon by medium energy ion bombardment. J. Phys. Condens. Matter. 21, 224004 (2009) T.K. Chini, D.P. Datta, S.R. Bhattacharyya, Ripple formation on silicon by medium energy ion bombardment. J. Phys. Condens. Matter. 21, 224004 (2009)
4.
go back to reference J. Muñoz-García, L. Vázquez, R. Cuerno, J.A. Sánchez-García, M. Castro, R. Gago, Self-organized surface nanopatterning by ion beam sputtering, in Toward Functional Nanomaterials, ed. by Z. Wang, Lecture Notes in Nanoscale Science and Technology, vol. 5 (Springer, New York, 2009), pp. 323–398 J. Muñoz-García, L. Vázquez, R. Cuerno, J.A. Sánchez-García, M. Castro, R. Gago, Self-organized surface nanopatterning by ion beam sputtering, in Toward Functional Nanomaterials, ed. by Z. Wang, Lecture Notes in Nanoscale Science and Technology, vol. 5 (Springer, New York, 2009), pp. 323–398
5.
go back to reference A. Keller, S. Facsko, Ion-induced nanoscale ripple patterns on Si surfaces: Theory and experiment. Materials 3, 4811–4841 (2010)CrossRef A. Keller, S. Facsko, Ion-induced nanoscale ripple patterns on Si surfaces: Theory and experiment. Materials 3, 4811–4841 (2010)CrossRef
6.
go back to reference M. Cornejo, J. Völlner, B. Ziberi, F. Frost, B. Rauschenbach, Ion beam sputtering: a route for fabrication of highly ordered nanopatterns, in Fabrication and Characterization in the Micro-Nano Range. ed. by F. Lasagni, A. Lasagni (Springer, Berlin, 2011), pp. 69–94CrossRef M. Cornejo, J. Völlner, B. Ziberi, F. Frost, B. Rauschenbach, Ion beam sputtering: a route for fabrication of highly ordered nanopatterns, in Fabrication and Characterization in the Micro-Nano Range. ed. by F. Lasagni, A. Lasagni (Springer, Berlin, 2011), pp. 69–94CrossRef
7.
go back to reference T. Som, D. Kanjilal (eds.), Nanofabrication by Ion-Beam Sputtering: Fundamentals and Applications (Pan Stanford Publishing, Boca Raton, 2013) T. Som, D. Kanjilal (eds.), Nanofabrication by Ion-Beam Sputtering: Fundamentals and Applications (Pan Stanford Publishing, Boca Raton, 2013)
8.
go back to reference J. Muñoz-García, L. Vázquez, M. Castro, R. Gago, A. Redondo-Cubero, A. Moreno-Barrado, R. Cuerno, Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Mater. Sci. Engng. R 86, 1–44 (2014)CrossRef J. Muñoz-García, L. Vázquez, M. Castro, R. Gago, A. Redondo-Cubero, A. Moreno-Barrado, R. Cuerno, Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Mater. Sci. Engng. R 86, 1–44 (2014)CrossRef
9.
go back to reference S.A. Norris, M.J. Aziz, Ion-induced nanopatterning of silicon: toward a predictive model. Appl. Phys. Rev. 6, 011311 (2019) S.A. Norris, M.J. Aziz, Ion-induced nanopatterning of silicon: toward a predictive model. Appl. Phys. Rev. 6, 011311 (2019)
10.
go back to reference B. Rauschenbach, F. Frost, Destructive and constructive routes to prepare nanostructures on surfaces by low-energy ion beam sputtering. Proc. SPIE 9929. Nanostructured Thin Films IX, 99290A (2016) B. Rauschenbach, F. Frost, Destructive and constructive routes to prepare nanostructures on surfaces by low-energy ion beam sputtering. Proc. SPIE 9929. Nanostructured Thin Films IX, 99290A (2016)
11.
go back to reference P. Haymann, J.J. Trillat, Action des ions argon de faibles energies sur des surfaces duranium. Compt. Rend. 248, 2472–2475 (1959) P. Haymann, J.J. Trillat, Action des ions argon de faibles energies sur des surfaces duranium. Compt. Rend. 248, 2472–2475 (1959)
12.
go back to reference R.L. Cunningham, P. Haymann, C. Lecomte, W.J. Moore J.J. Trillat, Etching of surfaces with 8-Kev argon ions. J. Appl. Phys. 31, 839–842 (1960) R.L. Cunningham, P. Haymann, C. Lecomte, W.J. Moore J.J. Trillat, Etching of surfaces with 8-Kev argon ions. J. Appl. Phys. 31, 839–842 (1960)
13.
go back to reference M. Navez, D. Chaperot, C. Stella, Microscopie electronique - etude de l’attaque du verre par bombardement ionique, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, Paris 254, 240–248 (1962) M. Navez, D. Chaperot, C. Stella, Microscopie electronique - etude de l’attaque du verre par bombardement ionique, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, Paris 254, 240–248 (1962)
14.
go back to reference R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced during sputtering. Rad. Eff. 18, 127–134 (1973)CrossRef R.S. Nelson, D.J. Mazey, Surface damage and topography changes produced during sputtering. Rad. Eff. 18, 127–134 (1973)CrossRef
15.
go back to reference J.L. Whitton, G. Carter, M.J. Nobes, J.S. Williams, The development of cones and associated features on ion bombarded copper. Rad. Eff. 32, 129–133 (1977)CrossRef J.L. Whitton, G. Carter, M.J. Nobes, J.S. Williams, The development of cones and associated features on ion bombarded copper. Rad. Eff. 32, 129–133 (1977)CrossRef
16.
go back to reference G. Carter, N.J. Nobes, F. Paton, J.S. Williams, J.L. Whitton, ion bombardment induced ripple topography on amorphous solids. Rad. Eff. 33, 65–77 (1977)CrossRef G. Carter, N.J. Nobes, F. Paton, J.S. Williams, J.L. Whitton, ion bombardment induced ripple topography on amorphous solids. Rad. Eff. 33, 65–77 (1977)CrossRef
17.
go back to reference A. Zalar, Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling. Thin Solid Films 124, 223–230 (1985). Sample rotating in Auger electron spectroscopy depth profiling. J. Vac. Sci. Technol. A 5, 2979–2980 (1987) A. Zalar, Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling. Thin Solid Films 124, 223230 (1985). Sample rotating in Auger electron spectroscopy depth profiling. J. Vac. Sci. Technol. A 5, 2979–2980 (1987)
18.
go back to reference Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, London, 2001) Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press, London, 2001)
19.
go back to reference G. Ozaydin, A.S. Özcan, Y. Wang, K.F. Ludwig, H. Zhou, R.L. Headrick, D.P. Siddons, Real-time X-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Appl. Phys. Lett. 87, 163104 (2005) G. Ozaydin, A.S. Özcan, Y. Wang, K.F. Ludwig, H. Zhou, R.L. Headrick, D.P. Siddons, Real-time X-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Appl. Phys. Lett. 87, 163104 (2005)
20.
go back to reference B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys. Rev. B 72, 235310 (2005) B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Ripple pattern formation on silicon surfaces by low-energy ion-beam erosion: experiment and theory. Phys. Rev. B 72, 235310 (2005)
21.
go back to reference F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008)CrossRef F. Frost, B. Ziberi, A. Schindler, B. Rauschenbach, Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces. Appl. Phys. A 91, 551–559 (2008)CrossRef
22.
go back to reference R.S. Robinson, S.M. Rossnagel, Ion beam-induced topography and surface diffusion. J. Vac. Sci. Technol. 21, 790–797 (1982)CrossRef R.S. Robinson, S.M. Rossnagel, Ion beam-induced topography and surface diffusion. J. Vac. Sci. Technol. 21, 790–797 (1982)CrossRef
23.
go back to reference T. Allmers, M. Donath, G. Rangelov, Pattern formation by erosion sputtering on GaSb: transition from dot to ripple formation and influence of impurities. J. Vac. Sci. Tech. B 24, 582–586 (2006)CrossRef T. Allmers, M. Donath, G. Rangelov, Pattern formation by erosion sputtering on GaSb: transition from dot to ripple formation and influence of impurities. J. Vac. Sci. Tech. B 24, 582–586 (2006)CrossRef
24.
go back to reference B. Ziberi, F. Frost, B. Rauschenbach, Pattern transitions on Ge surfaces during low-energy ion beam erosion. Appl. Phys. Lett. 88, 1731115 (2006)CrossRef B. Ziberi, F. Frost, B. Rauschenbach, Pattern transitions on Ge surfaces during low-energy ion beam erosion. Appl. Phys. Lett. 88, 1731115 (2006)CrossRef
25.
go back to reference D. Carbone, A. Alija, O. Plantevin, R. Gago, S. Facsko T.H. Metzger, Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering. Nanotechnology 19, 035304 (2008) D. Carbone, A. Alija, O. Plantevin, R. Gago, S. Facsko T.H. Metzger, Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering. Nanotechnology 19, 035304 (2008)
26.
go back to reference B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Ripple rotation, pattern transitions, and long range ordered dots on silicon by ion beam erosion. Appl. Phys. Lett. 92, 063102 (2008) B. Ziberi, F. Frost, M. Tartz, H. Neumann, B. Rauschenbach, Ripple rotation, pattern transitions, and long range ordered dots on silicon by ion beam erosion. Appl. Phys. Lett. 92, 063102 (2008)
27.
go back to reference B. Rauschenbach, B. Ziberi, F. Frost, Self-organized pattern formation by ion beam erosion, in: Proceedings of the 2nd IEEE-International Nanoelectronics Conference (INEC, Shanghai, 2008), pp. 93–97 B. Rauschenbach, B. Ziberi, F. Frost, Self-organized pattern formation by ion beam erosion, in: Proceedings of the 2nd IEEE-International Nanoelectronics Conference (INEC, Shanghai, 2008), pp. 93–97
28.
go back to reference G. Ozaydin-Ince, K.F. Ludwig, In situ X-ray studies of native and Mo-seeded surface nanostructuring during ion bombardment of Si(100). J. Phys. Condens. Matter. 21, 224008 (2009) G. Ozaydin-Ince, K.F. Ludwig, In situ X-ray studies of native and Mo-seeded surface nanostructuring during ion bombardment of Si(100). J. Phys. Condens. Matter. 21, 224008 (2009)
29.
go back to reference C.S. Madi, B. Davidovitch, H. Bola George, S.A. Norris, M.P. Brenner, M.J. Aziz, Multiple bifurcation types and the linear dynamics of ion sputtered surfaces. Phys. Rev. Lett. 101, 246102 (2008) C.S. Madi, B. Davidovitch, H. Bola George, S.A. Norris, M.P. Brenner, M.J. Aziz, Multiple bifurcation types and the linear dynamics of ion sputtered surfaces. Phys. Rev. Lett. 101, 246102 (2008)
30.
go back to reference C.S. Madi, H.B. George, M.J. Aziz, Linear stability and instability patterns in ion-sputtered silicon. J. Phys. Condens. Matter 21, 224010 (2009) C.S. Madi, H.B. George, M.J. Aziz, Linear stability and instability patterns in ion-sputtered silicon. J. Phys. Condens. Matter 21, 224010 (2009)
31.
go back to reference C.S. Madi, M.J. Aziz, Multiple scattering causes the low energy–low angle constant wavelength topographical instability of argon ion bombarded silicon surfaces. Appl. Surf. Sci. 258, 4112–4115 (2012)CrossRef C.S. Madi, M.J. Aziz, Multiple scattering causes the low energy–low angle constant wavelength topographical instability of argon ion bombarded silicon surfaces. Appl. Surf. Sci. 258, 4112–4115 (2012)CrossRef
32.
go back to reference J.C. Perkinson, C.S. Madi, M.J. Aziz, Nanoscale topographic pattern formation on Kr+-bombarded germanium surfaces. J. Vac. Sci. Technol. A 31, 021405 (2013) J.C. Perkinson, C.S. Madi, M.J. Aziz, Nanoscale topographic pattern formation on Kr+-bombarded germanium surfaces. J. Vac. Sci. Technol. A 31, 021405 (2013)
33.
go back to reference C.S. Madi, E. Anzenberg, K.F. Ludwig, Jr., Michael J. Aziz, Mass redistribution causes the structural richness of ion-irradiated surfaces. Phys. Rev. Lett. 106, 066101 (2011). Erratum, Phys. Rev. Lett. 110, 069903 (2013) C.S. Madi, E. Anzenberg, K.F. Ludwig, Jr., Michael J. Aziz, Mass redistribution causes the structural richness of ion-irradiated surfaces. Phys. Rev. Lett. 106, 066101 (2011). Erratum, Phys. Rev. Lett. 110, 069903 (2013)
34.
go back to reference E. Anzenberg, C.S. Madi, M.J. Aziz, K.F. Ludwig, Jr., Time-resolved measurements of nanoscale surface pattern formation kinetics in two dimensions on ion-irradiated Si. Phys. Rev. B 84, 214108 (2011) E. Anzenberg, C.S. Madi, M.J. Aziz, K.F. Ludwig, Jr., Time-resolved measurements of nanoscale surface pattern formation kinetics in two dimensions on ion-irradiated Si. Phys. Rev. B 84, 214108 (2011)
35.
go back to reference M. Teichmann, Musterbildung auf Si- und Ge-Oberflächen durch niederenergetische ionenstrahlerosion. Dissertation, University Leipzig (2015) M. Teichmann, Musterbildung auf Si- und Ge-Oberflächen durch niederenergetische ionenstrahlerosion. Dissertation, University Leipzig (2015)
36.
go back to reference S. Macko, F. Frost, B. Ziberi, D.F. Förster, T. Michely, Is kev ion-induced pattern formation on Si(001) caused by metal impurities? Nanotechnology 21, 85301 (2010)CrossRef S. Macko, F. Frost, B. Ziberi, D.F. Förster, T. Michely, Is kev ion-induced pattern formation on Si(001) caused by metal impurities? Nanotechnology 21, 85301 (2010)CrossRef
37.
go back to reference M. Engler, Self-organized ion beam pattern formation on Si(001). Dissertation, Universität zu Köln (2015) M. Engler, Self-organized ion beam pattern formation on Si(001). Dissertation, Universität zu Köln (2015)
38.
go back to reference T. Basu, J.R. Mohanty, T. Som, Unusual pattern formation on Si(100) due to low energy ion bombardment. Appl. Surf. Sci. 258, 9944–9994 (2012)CrossRef T. Basu, J.R. Mohanty, T. Som, Unusual pattern formation on Si(100) due to low energy ion bombardment. Appl. Surf. Sci. 258, 9944–9994 (2012)CrossRef
39.
go back to reference D. Chowdhury, D. Ghose, Tuning of nanopatterns on Si (100) substrate: role of ion beam processing parameters during sputtering. Appl. Sci. Lett. 22, 105–110 (2016) D. Chowdhury, D. Ghose, Tuning of nanopatterns on Si (100) substrate: role of ion beam processing parameters during sputtering. Appl. Sci. Lett. 22, 105–110 (2016)
40.
go back to reference M. Castro, R. Gago, L.Vázquez, J. Muñoz-García, R. Cuerno, Stress-induced solid flow drives surface nanopatterning of silicon by ion-beam irradiation. Phys. Rev. B 86, 214107 (2012) M. Castro, R. Gago, L.Vázquez, J. Muñoz-García, R. Cuerno, Stress-induced solid flow drives surface nanopatterning of silicon by ion-beam irradiation. Phys. Rev. B 86, 214107 (2012)
41.
go back to reference E. Anzenberg, J.C. Perkinson, C.S. Madi, M.J. Aziz, K.F. Ludwig, Jr., Nanoscale surface pattern formation kinetics on germanium irradiated by Kr+ ions. Phys. Rev. B 86, 245412 (2012) E. Anzenberg, J.C. Perkinson, C.S. Madi, M.J. Aziz, K.F. Ludwig, Jr., Nanoscale surface pattern formation kinetics on germanium irradiated by Kr+ ions. Phys. Rev. B 86, 245412 (2012)
42.
go back to reference H. Hofsäss, K. Zhang, Surfactant sputtering. Appl. Phys. A 92, 517–524 (2008)CrossRef H. Hofsäss, K. Zhang, Surfactant sputtering. Appl. Phys. A 92, 517–524 (2008)CrossRef
43.
go back to reference B. Davidovitch, M.J. Aziz, M.P. Brenner, On the stabilization of ion sputtered surfaces. Phys. Rev. B 76, 205420 (2007) B. Davidovitch, M.J. Aziz, M.P. Brenner, On the stabilization of ion sputtered surfaces. Phys. Rev. B 76, 205420 (2007)
44.
go back to reference Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976). G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977) Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976). G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronaut. 4, 1177–1206 (1977)
45.
go back to reference J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001). J. Vac. Sci. Technol. A 18, 115–120 (2000)CrossRef J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Nonlinear amplitude evolution during spontaneous patterning of ion-bombarded Si(001). J. Vac. Sci. Technol. A 18, 115–120 (2000)CrossRef
46.
go back to reference M. Castro, R. Cuerno, Hydrodynamic approach to surface pattern formation by ion beams. Appl. Surf. Sci. 258, 4171–4178 (2012)CrossRef M. Castro, R. Cuerno, Hydrodynamic approach to surface pattern formation by ion beams. Appl. Surf. Sci. 258, 4171–4178 (2012)CrossRef
47.
go back to reference S.A. Norris, M.P. Brenner, M.J. Aziz, From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation. J. Phys. Condens. Matter. 21, 224017 (2009) S.A. Norris, M.P. Brenner, M.J. Aziz, From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation. J. Phys. Condens. Matter. 21, 224017 (2009)
48.
go back to reference S.A. Norris, J. Samela, L. Bukonte, M. Backman, F. Djurabekova, K. Nordlund, C.S. Madi, M.P. Brenner, M.J. Aziz, Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Comm. 2, 276–281 (2011)CrossRef S.A. Norris, J. Samela, L. Bukonte, M. Backman, F. Djurabekova, K. Nordlund, C.S. Madi, M.P. Brenner, M.J. Aziz, Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation. Nat. Comm. 2, 276–281 (2011)CrossRef
49.
go back to reference M. Teichmann, J. Lorbeer, B. Ziberi, F. Frost, B. Rauschenbach, Pattern formation on Ge by low energy ion beam erosion. New J. Phys. 13, 103029 (2013) M. Teichmann, J. Lorbeer, B. Ziberi, F. Frost, B. Rauschenbach, Pattern formation on Ge by low energy ion beam erosion. New J. Phys. 13, 103029 (2013)
50.
go back to reference J. Lorbeer, Selbstorganisierte Nanostrukturierung oxidischer Oberflächen mittels niederenergetischer ionenstrahlerosion. Dissertation, University Leipzig (2015) J. Lorbeer, Selbstorganisierte Nanostrukturierung oxidischer Oberflächen mittels niederenergetischer ionenstrahlerosion. Dissertation, University Leipzig (2015)
51.
go back to reference D. Babonneau, E. Vandenhecke, S. Camelio, Formation of nanoripples on amorphous alumina thin films during low-energy ion-beam sputtering: experiments and simulations. Phys. Rev. B 95, 085412 (2017) D. Babonneau, E. Vandenhecke, S. Camelio, Formation of nanoripples on amorphous alumina thin films during low-energy ion-beam sputtering: experiments and simulations. Phys. Rev. B 95, 085412 (2017)
52.
go back to reference M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces. Nanoscale Res. Lett. 9, 439–446 (2014)CrossRef M. Teichmann, J. Lorbeer, F. Frost, B. Rauschenbach, Ripple coarsening on ion beam-eroded surfaces. Nanoscale Res. Lett. 9, 439–446 (2014)CrossRef
53.
go back to reference K. Zhang, M. Brötzmann, H. Hofsäss, Surfactant-driven self-organized surface patterns by ion beam erosion. New J. Phys. 13, 013033 (2011) K. Zhang, M. Brötzmann, H. Hofsäss, Surfactant-driven self-organized surface patterns by ion beam erosion. New J. Phys. 13, 013033 (2011)
54.
go back to reference Y. Liu, D. Hirsch, R. Fechner, Y. Hong, S. Fu, F. Frost, B. Rauschenbach, Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition. Appl. Phys. A 124, 73 (2018)CrossRef Y. Liu, D. Hirsch, R. Fechner, Y. Hong, S. Fu, F. Frost, B. Rauschenbach, Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition. Appl. Phys. A 124, 73 (2018)CrossRef
55.
go back to reference T. Basu, D. Datta, T. Som, Transition from ripples to faceted structures under low-energy argon ion bombardment of silicon: understanding the role of shadowing and sputtering. Nanoscale Res. Lett. 8, 289–296 (2013)CrossRef T. Basu, D. Datta, T. Som, Transition from ripples to faceted structures under low-energy argon ion bombardment of silicon: understanding the role of shadowing and sputtering. Nanoscale Res. Lett. 8, 289–296 (2013)CrossRef
56.
go back to reference K. Zhang, H. Hofsäss, F. Rotter, M. Uhrmacher, C. Ronning, J. Krauser, Morphology of Si surfaces sputter-eroded by low-energy Xe-ions at glancing incident angle. Surf. Coat. Technol. 203, 17–18 (2009)CrossRef K. Zhang, H. Hofsäss, F. Rotter, M. Uhrmacher, C. Ronning, J. Krauser, Morphology of Si surfaces sputter-eroded by low-energy Xe-ions at glancing incident angle. Surf. Coat. Technol. 203, 17–18 (2009)CrossRef
57.
go back to reference C.S. Madi, H.B. George, M.J. Aziz, Linear stability and instability patterns in ion-sputtered silicon. J. Phys. Consens. Matter 21, 224010 (2009) C.S. Madi, H.B. George, M.J. Aziz, Linear stability and instability patterns in ion-sputtered silicon. J. Phys. Consens. Matter 21, 224010 (2009)
58.
go back to reference A. Keller, S. Roßbach, S. Facsko, W. Möller, Simultaneous formation of two ripple modes on ion sputtered silicon. Nanotechnology 19, 135303 (2008) A. Keller, S. Roßbach, S. Facsko, W. Möller, Simultaneous formation of two ripple modes on ion sputtered silicon. Nanotechnology 19, 135303 (2008)
59.
go back to reference P.F.A. Alkemade, Propulsion of ripples on glass by ion bombardment. Phys. Rev. Lett. 96, 107602 (2006) P.F.A. Alkemade, Propulsion of ripples on glass by ion bombardment. Phys. Rev. Lett. 96, 107602 (2006)
60.
go back to reference D. Chowdhury, D. Ghose, S.A. Mollick, B. Satpati, S.R. Bhattacharyya, Nanorippling of ion irradiated GaAs (001) surface near the sputter-threshold energy. Phys. Stat. Sol. (b) 252, 811–815 (2015)CrossRef D. Chowdhury, D. Ghose, S.A. Mollick, B. Satpati, S.R. Bhattacharyya, Nanorippling of ion irradiated GaAs (001) surface near the sputter-threshold energy. Phys. Stat. Sol. (b) 252, 811–815 (2015)CrossRef
61.
go back to reference P. Karmakar, D. Ghose, Nanoscale periodic and faceted structures formation on Si(100) by oblique angle oxygen ion sputtering. Nucl. Instr. Meth Phys. Res. B 230, 539–544 (2005)CrossRef P. Karmakar, D. Ghose, Nanoscale periodic and faceted structures formation on Si(100) by oblique angle oxygen ion sputtering. Nucl. Instr. Meth Phys. Res. B 230, 539–544 (2005)CrossRef
62.
go back to reference C.C. Umbach, R.L. Headrick, K.-C. Chang, Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow. Phys. Rev. Lett. 87, 246104 (2001) C.C. Umbach, R.L. Headrick, K.-C. Chang, Spontaneous nanoscale corrugation of ion-eroded SiO2: the role of ion-irradiation-enhanced viscous flow. Phys. Rev. Lett. 87, 246104 (2001)
63.
go back to reference M.A. Makeev, R. Cuerno, A.-L. Barabási, Morphology of ion-sputtered surfaces. Nucl. Instr. Meth. Phys. Res. B 97, 185–227 (2002)CrossRef M.A. Makeev, R. Cuerno, A.-L. Barabási, Morphology of ion-sputtered surfaces. Nucl. Instr. Meth. Phys. Res. B 97, 185–227 (2002)CrossRef
64.
go back to reference J. Muñoz-García, M. Castro, R. Cuerno, Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering. Phys. Rev. Lett. 96, 08610 (2006) J. Muñoz-García, M. Castro, R. Cuerno, Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering. Phys. Rev. Lett. 96, 08610 (2006)
65.
go back to reference J. Muñoz-García, R. Cuerno, M. Castro, Coupling of morphology to surface transport in ion-beam irradiated surfaces: oblique incidence. Phys. Rev. B 78, 205408 (2008) J. Muñoz-García, R. Cuerno, M. Castro, Coupling of morphology to surface transport in ion-beam irradiated surfaces: oblique incidence. Phys. Rev. B 78, 205408 (2008)
66.
go back to reference R. Cuerno, A.-L. Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746–4749 (1995)CrossRef R. Cuerno, A.-L. Barabási, Dynamic scaling of ion-sputtered surfaces. Phys. Rev. Lett. 74, 4746–4749 (1995)CrossRef
67.
go back to reference G.K. Wehner, D.J. Hajicek, Cone formation on metal targets during sputtering. J. Appl. Phys. Phys. 42, 1145–1149 (1971)CrossRef G.K. Wehner, D.J. Hajicek, Cone formation on metal targets during sputtering. J. Appl. Phys. Phys. 42, 1145–1149 (1971)CrossRef
68.
go back to reference S. Rossnagel, R. Robinson, Surface diffusion activation energy determination using ion beam microtexturing. J. Vac. Sci. Technol. 20, 195–198 (1982). H.R. Kaufman, R.S. Robinson, Ion beam texturing of surfaces. J. Vac. Sci. Technol. 16, 175–178 (1979) S. Rossnagel, R. Robinson, Surface diffusion activation energy determination using ion beam microtexturing. J. Vac. Sci. Technol. 20, 195198 (1982). H.R. Kaufman, R.S. Robinson, Ion beam texturing of surfaces. J. Vac. Sci. Technol. 16, 175–178 (1979)
69.
go back to reference W.R. Hudson, Ion beam texturing. J. Vac. Sci. Technol. 14, 286–289 (1977)CrossRef W.R. Hudson, Ion beam texturing. J. Vac. Sci. Technol. 14, 286–289 (1977)CrossRef
70.
go back to reference B. Ziberi, F.Frost, M. Tartz, H. Neumann B. Rauschenbach, Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion. Thin Solid Films 459, 106–110 (2004) B. Ziberi, F.Frost, M. Tartz, H. Neumann B. Rauschenbach, Importance of ion beam parameters on self-organized pattern formation on semiconductor surfaces by ion beam erosion. Thin Solid Films 459, 106–110 (2004)
71.
go back to reference J.A. Sánchez-García, L. Vázquez, R. Gago, A. Redondo-Cubero, J.M. Albella, Z. Czigány, Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots. Nanotechnology 19, 355306 (2008) J.A. Sánchez-García, L. Vázquez, R. Gago, A. Redondo-Cubero, J.M. Albella, Z. Czigány, Tuning the surface morphology in self-organized ion beam nanopatterning of Si(001) via metal incorporation: from holes to dots. Nanotechnology 19, 355306 (2008)
72.
go back to reference J.A. Sánchez-García, R. Gago. R. Caillard, A. Redondo-Cubero, J.A. Martin-Gago, F.J. Palomares, M. Fernández, L. Vázquez, Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation. J. Phys. Condens. Matter 21, 224009 (2009) J.A. Sánchez-García, R. Gago. R. Caillard, A. Redondo-Cubero, J.A. Martin-Gago, F.J. Palomares, M. Fernández, L. Vázquez, Production of nanohole/nanodot patterns on Si(001) by ion beam sputtering with simultaneous metal incorporation. J. Phys. Condens. Matter 21, 224009 (2009)
73.
go back to reference M. Cornejo, B. Ziberi. C. Meinecke, D. Hirsch, J.W. Gerlach, T. Höche, F. Frost, B. Rauschenbach, Self-organized patterning on Si(001) by ion sputtering with simultaneous metal incorporation. Appl. Phys. A 102, 593–599 (2011) M. Cornejo, B. Ziberi. C. Meinecke, D. Hirsch, J.W. Gerlach, T. Höche, F. Frost, B. Rauschenbach, Self-organized patterning on Si(001) by ion sputtering with simultaneous metal incorporation. Appl. Phys. A 102, 593–599 (2011)
74.
go back to reference S. Macko, F. Frost, M. Engler, D. Hirsch, T. Höche, J. Grenzer, T. Michely, Phenomenology of iron-assisted ion beam pattern formation on Si(001). New J. Phys. 13, 073017 (2011) S. Macko, F. Frost, M. Engler, D. Hirsch, T. Höche, J. Grenzer, T. Michely, Phenomenology of iron-assisted ion beam pattern formation on Si(001). New J. Phys. 13, 073017 (2011)
75.
go back to reference A. Redondo-Cubero, R. Gago, F. Palomares, A. Mücklich, M. Vinnichenko, L. Vázquez, Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: morphological and compositional correlation. Phys. Rev. B 86, 085436 (2012) A. Redondo-Cubero, R. Gago, F. Palomares, A. Mücklich, M. Vinnichenko, L. Vázquez, Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: morphological and compositional correlation. Phys. Rev. B 86, 085436 (2012)
76.
go back to reference J. Zhou, M. Lu, Mechanism of Fe impurity motivated ion-nanopatterning of Si (100) surfaces. Phys. Rev. B 82, 125404 (2010) J. Zhou, M. Lu, Mechanism of Fe impurity motivated ion-nanopatterning of Si (100) surfaces. Phys. Rev. B 82, 125404 (2010)
77.
go back to reference G. Carter, The physics and applications of ion beam erosion. J. Phys. D Appl. Phys. 34, R1–R22 (2001)CrossRef G. Carter, The physics and applications of ion beam erosion. J. Phys. D Appl. Phys. 34, R1–R22 (2001)CrossRef
78.
go back to reference S. Bhattacharjee, P. Karmakar, V. Naik, A. Sinha, A. Chakrabarti, The role of carbon in ion-beam nano-pattering of silicon. Appl. Phys. Lett. 103, 181601 (2013) S. Bhattacharjee, P. Karmakar, V. Naik, A. Sinha, A. Chakrabarti, The role of carbon in ion-beam nano-pattering of silicon. Appl. Phys. Lett. 103, 181601 (2013)
79.
go back to reference R. Gago, L. Vázquez, O. Plantevin, J.A. Sánchez-García, M. Varela, M.C. Ballesteros, J.M. Albella, T.H. Metzger, Temperature influence on the production of nanodot patterns by ion beam sputtering of Si(001). Phys. Rev. B 73, 155414 (2006) R. Gago, L. Vázquez, O. Plantevin, J.A. Sánchez-García, M. Varela, M.C. Ballesteros, J.M. Albella, T.H. Metzger, Temperature influence on the production of nanodot patterns by ion beam sputtering of Si(001). Phys. Rev. B 73, 155414 (2006)
80.
go back to reference Z.M. Wang, L.P.H. Juergens, J.Y. Wang, E.J. Mittemeijer, Fundamentals of metal-induced crystallization of amorphous semiconductors. Adv. Eng. Mater. 11, 131–135 (2009). D.N. Lee, S.B. Lee, Solid-phase crystallization of amorphous silicon films, in Advanced Topics in Crystallization, ed. by Y. Mastai, InTech, Rijeka, 2015, pp. 205–234 Z.M. Wang, L.P.H. Juergens, J.Y. Wang, E.J. Mittemeijer, Fundamentals of metal-induced crystallization of amorphous semiconductors. Adv. Eng. Mater. 11, 131–135 (2009). D.N. Lee, S.B. Lee, Solid-phase crystallization of amorphous silicon films, in Advanced Topics in Crystallization, ed. by Y. Mastai, InTech, Rijeka, 2015, pp. 205–234
81.
go back to reference K. Zhang, M. Brötzmann, H. Hofsäss, Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron. AIP Adv. 2, 032123 (2012) K. Zhang, M. Brötzmann, H. Hofsäss, Sharp transition from ripple patterns to a flat surface for ion beam erosion of Si with simultaneous co-deposition of iron. AIP Adv. 2, 032123 (2012)
82.
go back to reference O. El-Atwani, S. Gonderman, A. DeMasi, A, Suslova, J. Fowler, M. El-Etwani, K. Ludwig, J.P. Allain, Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: real time X-ray studies reveal the effect of silicide bonding. J. Appl. Phys. 113, 124305 (2013) O. El-Atwani, S. Gonderman, A. DeMasi, A, Suslova, J. Fowler, M. El-Etwani, K. Ludwig, J.P. Allain, Nanopatterning of metal-coated silicon surfaces via ion beam irradiation: real time X-ray studies reveal the effect of silicide bonding. J. Appl. Phys. 113, 124305 (2013)
83.
go back to reference S.K. Vayalil, A. Gupta, S.V. Roth, V. Ganesan, Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion. J. Appl. Phys. 117, 024309 (2015) S.K. Vayalil, A. Gupta, S.V. Roth, V. Ganesan, Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion. J. Appl. Phys. 117, 024309 (2015)
84.
go back to reference M. Engler, F. Frost, S. Müller, S. Macko, M. Will, R. Feder, D. Spemann, R. Hübner, S. Facsko, T. Michely, Silicide induced ion beam patterning of Si(001). Nanotechnology 25, 115303 (2014) M. Engler, F. Frost, S. Müller, S. Macko, M. Will, R. Feder, D. Spemann, R. Hübner, S. Facsko, T. Michely, Silicide induced ion beam patterning of Si(001). Nanotechnology 25, 115303 (2014)
85.
go back to reference A.R. Miedema, A simple model for alloys. I. Rules for the alloying behaviour of transition metal. Philips Techn. Rev. 33, 149–160 (1973). A simple model for alloys. Il, The influence of ionicity on the stability and other physical properties of alloys. Philips Techn. Rev. 33, 196–202 (1973) A.R. Miedema, A simple model for alloys. I. Rules for the alloying behaviour of transition metal. Philips Techn. Rev. 33, 149160 (1973). A simple model for alloys. Il, The influence of ionicity on the stability and other physical properties of alloys. Philips Techn. Rev. 33, 196–202 (1973)
86.
go back to reference B. Moon, S. Yoo, J.-S. Kim, S.J. Kang, J. Muñoz-Gracía, R. Cuerno, Ion-beam nanopatterning of silicon surfaces under codeposition of non-silicide-forming impurities. Phys. Rev. B 93, 115430 (2016) B. Moon, S. Yoo, J.-S. Kim, S.J. Kang, J. Muñoz-Gracía, R. Cuerno, Ion-beam nanopatterning of silicon surfaces under codeposition of non-silicide-forming impurities. Phys. Rev. B 93, 115430 (2016)
87.
go back to reference C. Teichert, C. Hofer, G. Hlawacek, Self-organization of nanostructures in inorganic and organic semiconductor systems. Adv. Eng. Mat. 8, 1065–1073 (2006)CrossRef C. Teichert, C. Hofer, G. Hlawacek, Self-organization of nanostructures in inorganic and organic semiconductor systems. Adv. Eng. Mat. 8, 1065–1073 (2006)CrossRef
88.
go back to reference H. Hofsäss, K. Zhang, A. Pape, O. Bobes, M. Brötzmann, The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition. Appl. Phys. 111, 653–664 (2013)CrossRef H. Hofsäss, K. Zhang, A. Pape, O. Bobes, M. Brötzmann, The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition. Appl. Phys. 111, 653–664 (2013)CrossRef
89.
go back to reference M. Yoshitake, Y. Yamauchi, C. Bose, Sputtering rate measurements of some transition metal silicides and comparison with those of the elements. Surf. Interface. Anal. 36, 801–804 (2004)CrossRef M. Yoshitake, Y. Yamauchi, C. Bose, Sputtering rate measurements of some transition metal silicides and comparison with those of the elements. Surf. Interface. Anal. 36, 801–804 (2004)CrossRef
90.
go back to reference S. Berg, A.M. Barklund, B. Gelin, C. Nender, I.V. Katardjiev, Atom assisted sputtering yield amplification. J. Vac. Sci. Technol. A 10, 1592–1596 (1992). C. Nender, I.V. Katardjiev, J.P. Biersack, S. Berg, A.M. Barklund, Numerical and experimental studies of the sputter yield amplification effect. Radiat. Eff. Def. Solids 25, 281–291 (1993) S. Berg, A.M. Barklund, B. Gelin, C. Nender, I.V. Katardjiev, Atom assisted sputtering yield amplification. J. Vac. Sci. Technol. A 10, 1592–1596 (1992). C. Nender, I.V. Katardjiev, J.P. Biersack, S. Berg, A.M. Barklund, Numerical and experimental studies of the sputter yield amplification effect. Radiat. Eff. Def. Solids 25, 281–291 (1993)
91.
go back to reference J.M.E. Harper, S. Motakef, D. May, Highly selective sputtering of silicon from TiSi2 at elevated temperatures. Appl. Phys. Lett. 60, 1196–1198 (1992)CrossRef J.M.E. Harper, S. Motakef, D. May, Highly selective sputtering of silicon from TiSi2 at elevated temperatures. Appl. Phys. Lett. 60, 1196–1198 (1992)CrossRef
92.
go back to reference V.B. Shenoy, W.L. Chan, E. Chason, Compositionally modulated ripples induced by sputtering of alloy surfaces. Phys. Rev. Lett. 98, 25610 (2007)CrossRef V.B. Shenoy, W.L. Chan, E. Chason, Compositionally modulated ripples induced by sputtering of alloy surfaces. Phys. Rev. Lett. 98, 25610 (2007)CrossRef
93.
go back to reference R.M. Bradley, P.D. Shipman, Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 105, 145501 (2010). A surface layer of altered composition can play a key role in nanoscale pattern formation induced by ion bombardment. Appl. Surf. Sci. 258, 4161–4170 (2012) R.M. Bradley, P.D. Shipman, Spontaneous pattern formation induced by ion bombardment of binary compounds. Phys. Rev. Lett. 105, 145501 (2010). A surface layer of altered composition can play a key role in nanoscale pattern formation induced by ion bombardment. Appl. Surf. Sci. 258, 4161–4170 (2012)
94.
go back to reference P.D. Shipman, R.M. Bradley, Theory of nanoscale pattern formation induced by normal incidence ion bombardment of binary compounds. Phys. Rev. B 84, 085420 (2011) P.D. Shipman, R.M. Bradley, Theory of nanoscale pattern formation induced by normal incidence ion bombardment of binary compounds. Phys. Rev. B 84, 085420 (2011)
95.
go back to reference R.M. Bradley, Nanoscale patterns produced by ion erosion of a solid with codeposition of impurities: the crucial effect of compound formation. Phys. Rev. B 87, 205408 (2013) R.M. Bradley, Nanoscale patterns produced by ion erosion of a solid with codeposition of impurities: the crucial effect of compound formation. Phys. Rev. B 87, 205408 (2013)
96.
go back to reference R.M. Bradley, Morphological transitions in nanoscale patterns produced by concurrent ion sputtering and impurity co-deposition. J. Appl. Phys. 119, 134305 (2016) R.M. Bradley, Morphological transitions in nanoscale patterns produced by concurrent ion sputtering and impurity co-deposition. J. Appl. Phys. 119, 134305 (2016)
97.
go back to reference S.A. Norris, Ion-assisted phase separation in compound films: an alternate route to ordered nanostructures. J. Appl. Phys. 114, 204303 (2013) S.A. Norris, Ion-assisted phase separation in compound films: an alternate route to ordered nanostructures. J. Appl. Phys. 114, 204303 (2013)
98.
go back to reference S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285, 1551–1553 (1999)CrossRef S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel, Formation of ordered nanoscale semiconductor dots by ion sputtering. Science 285, 1551–1553 (1999)CrossRef
99.
go back to reference F. Frost, A. Schindler, F. Bigl, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys. Rev. Lett. 85, 4116–4119 (2000)CrossRef F. Frost, A. Schindler, F. Bigl, Roughness evolution of ion sputtered rotating InP surfaces: pattern formation and scaling laws. Phys. Rev. Lett. 85, 4116–4119 (2000)CrossRef
100.
go back to reference R. Gago, L. Vázquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Production of ordered silicon nanocrystals by low-energy ion sputtering. Appl. Phys. Lett. 78, 3316–3318 (2001)CrossRef R. Gago, L. Vázquez, R. Cuerno, M. Varela, C. Ballesteros, J.M. Albella, Production of ordered silicon nanocrystals by low-energy ion sputtering. Appl. Phys. Lett. 78, 3316–3318 (2001)CrossRef
101.
go back to reference A. Zalar, Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling. Thin Solid Films 124, 223–230 (1985)CrossRef A. Zalar, Improved depth resolution by sample rotation during Auger electron spectroscopy depth profiling. Thin Solid Films 124, 223–230 (1985)CrossRef
102.
go back to reference J. Muñoz-García, R. Cuerno, M. Castro, Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets. J. Phys. Condens. Matter 21, 224020 (2009) J. Muñoz-García, R. Cuerno, M. Castro, Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets. J. Phys. Condens. Matter 21, 224020 (2009)
103.
go back to reference B. Ziberi, F. Frost, B. Rauschenbach, T. Höche, Highly ordered self-organized dot patterns on Si surfaces by low-energy erosion. Appl. Phys. Lett. 87, 033113 (2005) B. Ziberi, F. Frost, B. Rauschenbach, T. Höche, Highly ordered self-organized dot patterns on Si surfaces by low-energy erosion. Appl. Phys. Lett. 87, 033113 (2005)
104.
go back to reference B. Ziberi, Ion beam induces pattern formation on Si and Ge surfaces. Dissertation. University Leipzig (2007) B. Ziberi, Ion beam induces pattern formation on Si and Ge surfaces. Dissertation. University Leipzig (2007)
105.
go back to reference F. Frost, B. Ziberi, T. Höche, B. Rauschenbach, The shape and ordering of self-organized nanostructures by ion sputtering. Nucl. Instr. Meth. Phys. Res. B 216, 9–19 (2004)CrossRef F. Frost, B. Ziberi, T. Höche, B. Rauschenbach, The shape and ordering of self-organized nanostructures by ion sputtering. Nucl. Instr. Meth. Phys. Res. B 216, 9–19 (2004)CrossRef
106.
go back to reference B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Ion-induced self-organized dot and ripple patterns on Si surfaces. Vacuum 81, 155–159 (2005)CrossRef B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Ion-induced self-organized dot and ripple patterns on Si surfaces. Vacuum 81, 155–159 (2005)CrossRef
107.
go back to reference F. Frost, B. Rauschenbach, Nanostructuring of solid surfaces by ion-beam erosion. Appl. Phys. A 77, 1–9 (2003)CrossRef F. Frost, B. Rauschenbach, Nanostructuring of solid surfaces by ion-beam erosion. Appl. Phys. A 77, 1–9 (2003)CrossRef
108.
go back to reference B. Ziberi, F. Frost, B. Rauschenbach, Self-organized dot patterns on Si Surfaces during noble gas ion beam erosion. Surf. Sci. 600, 3757–3761 (2006)CrossRef B. Ziberi, F. Frost, B. Rauschenbach, Self-organized dot patterns on Si Surfaces during noble gas ion beam erosion. Surf. Sci. 600, 3757–3761 (2006)CrossRef
109.
go back to reference B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Dot Pattern Formation on Silicon Surfaces by Low-Energy Ion Beam Erosion, ed. by E. Chason, G.H. Gilmer, H. Huang, E. Wang, vol. 849 (MRS Proceed. 2004), KK6.2 B. Ziberi, F. Frost, T. Höche, B. Rauschenbach, Dot Pattern Formation on Silicon Surfaces by Low-Energy Ion Beam Erosion, ed. by E. Chason, G.H. Gilmer, H. Huang, E. Wang, vol. 849 (MRS Proceed. 2004), KK6.2
110.
go back to reference R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef R.M. Bradley, J.M.E. Harper, Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Technol. A 6, 2390–2396 (1988)CrossRef
111.
go back to reference B. Kahng, H. Jeong, A.-L- Barabási, Quantum dot and hole formation in sputter erosion. Appl. Phys. Lett. 78, 805–807 (2001) B. Kahng, H. Jeong, A.-L- Barabási, Quantum dot and hole formation in sputter erosion. Appl. Phys. Lett. 78, 805–807 (2001)
112.
go back to reference J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985) J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985)
113.
go back to reference S. Facsko, T. Bobek, A. Stahl, H. Kurz, T. Dekorsy, Dissipative continuum model for self-organized pattern formation during ion-beam erosion. Phys. Rev. B 69, 153412 (2004) S. Facsko, T. Bobek, A. Stahl, H. Kurz, T. Dekorsy, Dissipative continuum model for self-organized pattern formation during ion-beam erosion. Phys. Rev. B 69, 153412 (2004)
114.
go back to reference D. Chowdhury, D. Ghose, B. Satpati, Production of ordered and pure Si nanodots at grazing ion beam sputtering under concurrent substrate rotation. Mater. Sci. Eng. B 179, 1–5 (2014)CrossRef D. Chowdhury, D. Ghose, B. Satpati, Production of ordered and pure Si nanodots at grazing ion beam sputtering under concurrent substrate rotation. Mater. Sci. Eng. B 179, 1–5 (2014)CrossRef
115.
go back to reference M.A. Makeev, A.-L. Barabási, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800–2802 (1997)CrossRef M.A. Makeev, A.-L. Barabási, Ion-induced effective surface diffusion in ion sputtering. Appl. Phys. Lett. 71, 2800–2802 (1997)CrossRef
116.
go back to reference S. Facsko, H. Kurz, T. Dekorsy, Energy dependence of quantum dot formation by ion sputtering. Phys. Rev. B 63, 165329 (2001) S. Facsko, H. Kurz, T. Dekorsy, Energy dependence of quantum dot formation by ion sputtering. Phys. Rev. B 63, 165329 (2001)
117.
go back to reference Y. Wang, S.F. Yoon, C.Y. Ngo, C.Z. Tong, C.Y. Liu, Low energy Ar+ sputtering-induced GaAs quantum dot formation and evolution. J. Appl. Phys. 106, 024301 (2009) Y. Wang, S.F. Yoon, C.Y. Ngo, C.Z. Tong, C.Y. Liu, Low energy Ar+ sputtering-induced GaAs quantum dot formation and evolution. J. Appl. Phys. 106, 024301 (2009)
118.
go back to reference L. Ling, W. Li, L. Qi, M. Lu, X. Yang, C. Gu, Nanopatterning of Si(110) surface by ion sputtering: an experimental and simulation study. Phys. Rev. B 71, 155329 (2005) L. Ling, W. Li, L. Qi, M. Lu, X. Yang, C. Gu, Nanopatterning of Si(110) surface by ion sputtering: an experimental and simulation study. Phys. Rev. B 71, 155329 (2005)
119.
go back to reference M. Lu, X.J. Yang, S.S. Perry, J.W. Rabalais, Self-organized nanodot formation on MgO(100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80, 2096–2098 (2002)CrossRef M. Lu, X.J. Yang, S.S. Perry, J.W. Rabalais, Self-organized nanodot formation on MgO(100) by ion bombardment at high temperatures. Appl. Phys. Lett. 80, 2096–2098 (2002)CrossRef
120.
go back to reference W.-B. Fan, W.-Q. Li, L.-J. Qi, H.-T Sun, J. Luo, Y.-Y Zhao M. Lu, On the role of ion flux in nanostructuring by ion sputter erosion. Nanotechnol. 16, 1526–1529 (2005) W.-B. Fan, W.-Q. Li, L.-J. Qi, H.-T Sun, J. Luo, Y.-Y Zhao M. Lu, On the role of ion flux in nanostructuring by ion sputter erosion. Nanotechnol. 16, 1526–1529 (2005)
121.
go back to reference E. Trynkiewicz, B.R. Jany, D. Wrana, F. Krok, Thermally controlled growth of surface nanostructures on ion-modified AIII–BV semiconductor crystals. Appl. Surf. Sci. 427, 349–356 (2018)CrossRef E. Trynkiewicz, B.R. Jany, D. Wrana, F. Krok, Thermally controlled growth of surface nanostructures on ion-modified AIII–BV semiconductor crystals. Appl. Surf. Sci. 427, 349–356 (2018)CrossRef
122.
go back to reference S.K. Tan, R. Liu, C.H. Sow, A.T.S. Wee, Self-organized nanodot formation on InP(100) by oxygen ion sputtering. Nucl. Instr. Meth. Phys. Res. B 248, 83–89 (2006)CrossRef S.K. Tan, R. Liu, C.H. Sow, A.T.S. Wee, Self-organized nanodot formation on InP(100) by oxygen ion sputtering. Nucl. Instr. Meth. Phys. Res. B 248, 83–89 (2006)CrossRef
123.
go back to reference I. Sulania, A. Tripathi, D. Kabiraj, M. Lequeux, D. Avasthi, Surface patterning on indium phosphide with low energy Ar atoms bombardment: an evolution from nanodots to nanoripples. Adv. Mat. Lett. 1, 118–122 (2010)CrossRef I. Sulania, A. Tripathi, D. Kabiraj, M. Lequeux, D. Avasthi, Surface patterning on indium phosphide with low energy Ar atoms bombardment: an evolution from nanodots to nanoripples. Adv. Mat. Lett. 1, 118–122 (2010)CrossRef
124.
go back to reference S.K. Tan, A.T.S. Wee, Self-organized nanodot formation on InP(100) by argon ion sputtering at normal incidence. J. Vac. Sci. Technol. B 24, 1444–1448 (2006)CrossRef S.K. Tan, A.T.S. Wee, Self-organized nanodot formation on InP(100) by argon ion sputtering at normal incidence. J. Vac. Sci. Technol. B 24, 1444–1448 (2006)CrossRef
125.
go back to reference D. Paramanik, S. Varma, Studies of InP nano dots formation after keV Ar+ irradiation. Nucl. Instr. Meth. Phys. Res. B 266, 1257–1260 (2008)CrossRef D. Paramanik, S. Varma, Studies of InP nano dots formation after keV Ar+ irradiation. Nucl. Instr. Meth. Phys. Res. B 266, 1257–1260 (2008)CrossRef
126.
go back to reference T. Bobek, S. Facsko, H. Kurz, T. Dekorsy, M. Xu, C. Teichert, Temporal evolution of dot patterns during ion sputtering. Phys. Rev. B 68, 085324 (2003) T. Bobek, S. Facsko, H. Kurz, T. Dekorsy, M. Xu, C. Teichert, Temporal evolution of dot patterns during ion sputtering. Phys. Rev. B 68, 085324 (2003)
127.
go back to reference M. Xu, C. Teichert, How do nano islands induced by ion sputtering evolve during the early stage of growth? J. Appl. Phys. 96, 244–2248 (2004)CrossRef M. Xu, C. Teichert, How do nano islands induced by ion sputtering evolve during the early stage of growth? J. Appl. Phys. 96, 244–2248 (2004)CrossRef
128.
go back to reference S. Facsko, T. Bobek. H. Kurz, T. Dekorsy, S. Kyrsta, R. Cremer, Ion-induced formation of regular nanostructures on amorphous GaSb surface. Appl. Phys. Lett. 80, 130–132 (2001) S. Facsko, T. Bobek. H. Kurz, T. Dekorsy, S. Kyrsta, R. Cremer, Ion-induced formation of regular nanostructures on amorphous GaSb surface. Appl. Phys. Lett. 80, 130–132 (2001)
129.
go back to reference R. Gago, L. Vázquez, O. Plantevin, T. Metzger, J. Mu˜noz-García, R. Cuerno, M. Castro, Order enhancement and coarsening of self-organized silicon nanodot patterns induced by ion-beam sputtering. Appl. Phys. Lett. 89, 233101 (2006) R. Gago, L. Vázquez, O. Plantevin, T. Metzger, J. Mu˜noz-García, R. Cuerno, M. Castro, Order enhancement and coarsening of self-organized silicon nanodot patterns induced by ion-beam sputtering. Appl. Phys. Lett. 89, 233101 (2006)
130.
go back to reference R. Kree, T. Yasseri, A.K. Hartmanns, The influence of beam divergence on ion beam-induced surface patterns. Nucl. Instr. Meth. Phys. Res. B 267, 1407–1411 (2009)CrossRef R. Kree, T. Yasseri, A.K. Hartmanns, The influence of beam divergence on ion beam-induced surface patterns. Nucl. Instr. Meth. Phys. Res. B 267, 1407–1411 (2009)CrossRef
131.
go back to reference U. Valbusa, C. Boragno, F. Buatier de Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys.: Condens. Matter 14, 8153–8175 (2002) U. Valbusa, C. Boragno, F. Buatier de Mongeot, Nanostructuring surfaces by ion sputtering. J. Phys.: Condens. Matter 14, 8153–8175 (2002)
132.
go back to reference M. Ritter, M. Stindtmann, M. Farle, K. Baberschke, Nanostructuring of the Cu(001) surface by ion bombardment: a STM study. Surf. Sci. 348, 243–252 (1996)CrossRef M. Ritter, M. Stindtmann, M. Farle, K. Baberschke, Nanostructuring of the Cu(001) surface by ion bombardment: a STM study. Surf. Sci. 348, 243–252 (1996)CrossRef
133.
go back to reference G. Constantini, F. Buatier de Mongeot, C. Boragno, U. Valbusa, Is ion sputtering always a “negative homoepitaxial deposition”? Phys. Rev. Lett. 86, 838–841 (2001)CrossRef G. Constantini, F. Buatier de Mongeot, C. Boragno, U. Valbusa, Is ion sputtering always a “negative homoepitaxial deposition”? Phys. Rev. Lett. 86, 838–841 (2001)CrossRef
134.
go back to reference T. Michely, G. Comsa, The scanning tunneling microscope as a means for the investigation of ion bombardment effects on metal surfaces. Nucl. Instr. Meth. Phys. Res. B 82, 207–219 (1993)CrossRef T. Michely, G. Comsa, The scanning tunneling microscope as a means for the investigation of ion bombardment effects on metal surfaces. Nucl. Instr. Meth. Phys. Res. B 82, 207–219 (1993)CrossRef
135.
go back to reference J. Naumann, J. Osing, A.J. Quinn, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef J. Naumann, J. Osing, A.J. Quinn, I.V. Shvets, Morphology of sputtering damage on Cu(111) studied by scanning tunneling microscopy. Surf. Sci. 388, 212–219 (1997)CrossRef
136.
go back to reference Q. Wei, X. Zhou, B. Joshi, Y. Chen, K.-D. Li, Q.H. Wei, K. Sun, L. Wang, Self-assembly of ordered semiconductor nanoholes by ion beam sputtering. Adv. Mater. 21, 2865–2869 (2009)CrossRef Q. Wei, X. Zhou, B. Joshi, Y. Chen, K.-D. Li, Q.H. Wei, K. Sun, L. Wang, Self-assembly of ordered semiconductor nanoholes by ion beam sputtering. Adv. Mater. 21, 2865–2869 (2009)CrossRef
137.
go back to reference X. Ou, A. Keller, M. Helm, J. Fassbender, S. Facsko, Reverse epitaxy of Ge: ordered and faceted surface patterns. Phys. Rev. Lett. 111, 016101 (2013) X. Ou, A. Keller, M. Helm, J. Fassbender, S. Facsko, Reverse epitaxy of Ge: ordered and faceted surface patterns. Phys. Rev. Lett. 111, 016101 (2013)
138.
go back to reference D. Chowdhury, D. Ghose, S.A. Mollick, Homoepitaxy of germanium by hyperthermal ion irradiation. Vacuum 107, 23–27 (2014)CrossRef D. Chowdhury, D. Ghose, S.A. Mollick, Homoepitaxy of germanium by hyperthermal ion irradiation. Vacuum 107, 23–27 (2014)CrossRef
139.
go back to reference I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of ripple formation on ion-bombarded solid surfaces. Phys. Rev. Lett. 78, 2612–2615 (1997)CrossRef I. Koponen, M. Hautala, O.-P. Sievänen, Simulations of ripple formation on ion-bombarded solid surfaces. Phys. Rev. Lett. 78, 2612–2615 (1997)CrossRef
140.
go back to reference R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4469 (1995)CrossRef R. Cuerno, H.A. Makse, S. Tomassone, S.T. Harrington, H.E. Stanley, Stochastic model for surface erosion via ion sputtering: dynamical evolution from ripple morphology to rough morphology. Phys. Rev. Lett. 75, 4464–4469 (1995)CrossRef
141.
go back to reference P. Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8, 1545–1553 (1973)CrossRef P. Sigmund, A mechanism of surface micro-roughening by ion bombardment. J. Mater. Sci. 8, 1545–1553 (1973)CrossRef
142.
go back to reference G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647–17653 (1996)CrossRef G. Carter, V. Vishnyakov, Roughening and ripple instabilities on ion-bombarded Si. Phys. Rev. B 54, 17647–17653 (1996)CrossRef
143.
go back to reference S.A. Norris, Stress-induced patterns in ion-irradiated silicon: model based on anisotropic plastic flow. Phys. Rev. B 86, 235405 (2012) S.A. Norris, Stress-induced patterns in ion-irradiated silicon: model based on anisotropic plastic flow. Phys. Rev. B 86, 235405 (2012)
144.
go back to reference W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)CrossRef W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)CrossRef
145.
go back to reference W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959)CrossRef W.W. Mullins, Flattening of a nearly plane solid surface due to capillarity. J. Appl. Phys. 30, 77–83 (1959)CrossRef
146.
go back to reference M. Feix, A.K. Harmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005) M. Feix, A.K. Harmann, R. Kree, J. Moñoz-Garcia, R. Cuerno, Influence of collision cascade statistics on pattern formation of ion-sputtered surfaces. Phys. Rev. B 71, 125407 (2005)
147.
go back to reference B. Ziberi, F. Frost, B. Rauschenbach, Formation of large-area nanostructures on Si and Ge surfaces during low energy ion beam erosion. J. Vac. Sci. Technol. A 24, 1344–1348 (2006)CrossRef B. Ziberi, F. Frost, B. Rauschenbach, Formation of large-area nanostructures on Si and Ge surfaces during low energy ion beam erosion. J. Vac. Sci. Technol. A 24, 1344–1348 (2006)CrossRef
148.
go back to reference S. Vogel, S. Linz, How ripples turn into dots: modeling ion-beam erosion under oblique incidence. Europhys. Lett. 76, 884–890 (2006)CrossRef S. Vogel, S. Linz, How ripples turn into dots: modeling ion-beam erosion under oblique incidence. Europhys. Lett. 76, 884–890 (2006)CrossRef
149.
go back to reference D.A. Pearson, R.M. Bradley, Theory of terraced topographies produced by oblique-incidence ion bombardment of solid surfaces. J. Phys. Condens. Matter 27, 015010 (2015) D.A. Pearson, R.M. Bradley, Theory of terraced topographies produced by oblique-incidence ion bombardment of solid surfaces. J. Phys. Condens. Matter 27, 015010 (2015)
150.
go back to reference S. Park, B. Kahng, H. Jeong, A.-L. Barabási, Dynamics of ripple formation in sputter erosion: nonlinear phenomena. Phys. Rev. Lett. 83, 3486–3489 (1999)CrossRef S. Park, B. Kahng, H. Jeong, A.-L. Barabási, Dynamics of ripple formation in sputter erosion: nonlinear phenomena. Phys. Rev. Lett. 83, 3486–3489 (1999)CrossRef
151.
go back to reference M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef M. Kardar, G. Parisi, Y.-C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRef
152.
go back to reference H. Chatè, P. Manneville, Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 58, 112–116 (1987)CrossRef H. Chatè, P. Manneville, Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 58, 112–116 (1987)CrossRef
153.
go back to reference M. Paniconi, K. Elder, Stationary, dynamical, and chaotic states of the two dimensional damped Kuramoto-Sivashinsky equation. Phys. Rev. E 56, 2713–2721 (1997)CrossRef M. Paniconi, K. Elder, Stationary, dynamical, and chaotic states of the two dimensional damped Kuramoto-Sivashinsky equation. Phys. Rev. E 56, 2713–2721 (1997)CrossRef
154.
go back to reference R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011) R.M. Bradley, Exact linear dispersion relation for the Sigmund model of ion sputtering. Phys. Rev. B 84, 075413 (2011)
155.
go back to reference A.S. Rudy, V.K. Smirnov, Hydrodynamic model of wave-ordered structures formed by ion bombardment of solids. Nucl. Instr. Meth. Phys. Res. B 159, 52–59 (1999)CrossRef A.S. Rudy, V.K. Smirnov, Hydrodynamic model of wave-ordered structures formed by ion bombardment of solids. Nucl. Instr. Meth. Phys. Res. B 159, 52–59 (1999)CrossRef
156.
go back to reference T. Aste, U. Valbusa, Surface instabilities in granular matter and ion-sputtered surfaces. Phys. A 332, 548–558 (2004). Ripples and ripples: from sandy deserts to ion-sputtered surfaces. New J. Phys. 7, 122 (2005) T. Aste, U. Valbusa, Surface instabilities in granular matter and ion-sputtered surfaces. Phys. A 332, 548–558 (2004). Ripples and ripples: from sandy deserts to ion-sputtered surfaces. New J. Phys. 7, 122 (2005)
157.
go back to reference R. Cuerno, M. Castro, J. Muñoz-García, R. Gago, L. Vázquez, Universal non-equilibrium phenomena at submicrometric surfaces and interfaces. Eur. Phys. J. Special Topics 146, 427–441 (2007)CrossRef R. Cuerno, M. Castro, J. Muñoz-García, R. Gago, L. Vázquez, Universal non-equilibrium phenomena at submicrometric surfaces and interfaces. Eur. Phys. J. Special Topics 146, 427–441 (2007)CrossRef
158.
go back to reference M. Castro, R. Cuerno, L. Vázquez, R. Gago, Self-organized ordering of nanostructures produced by ion-beam sputtering. Phys. Rev. Lett. 94, 016102 (2005) M. Castro, R. Cuerno, L. Vázquez, R. Gago, Self-organized ordering of nanostructures produced by ion-beam sputtering. Phys. Rev. Lett. 94, 016102 (2005)
159.
go back to reference D. Flamm, F. Frost, D. Hirsch, Evolution of surface topography of fused silica by ion beam sputtering. Appl. Surf. Sci. 179, 95–101 (2001)CrossRef D. Flamm, F. Frost, D. Hirsch, Evolution of surface topography of fused silica by ion beam sputtering. Appl. Surf. Sci. 179, 95–101 (2001)CrossRef
160.
go back to reference R. Cuerno, M. Castro, J. Muñoz-García, R. Gago, L. Vázquez, Universal non-equilibrium phenomena at submicrometric surfaces and interfaces. Eur. Phys. J. Spec. Top. 146, 427–441 (2007)CrossRef R. Cuerno, M. Castro, J. Muñoz-García, R. Gago, L. Vázquez, Universal non-equilibrium phenomena at submicrometric surfaces and interfaces. Eur. Phys. J. Spec. Top. 146, 427–441 (2007)CrossRef
161.
go back to reference M.W. Sckerl, P. Sigmund, M. Vicanek, Particle fluxes in atomic collision cascade. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 44 (1996). M.W. Sckerl, M. Vicanek, P. Sigmund, Momentum in atomic collision cascades. Nucl. Instr. Meth. Phys. Res. B 102, 86–92 (1995) M.W. Sckerl, P. Sigmund, M. Vicanek, Particle fluxes in atomic collision cascade. Det. Kgl. Danske Vid. Selskab. Mat.-Fys. Medd. 44 (1996). M.W. Sckerl, M. Vicanek, P. Sigmund, Momentum in atomic collision cascades. Nucl. Instr. Meth. Phys. Res. B 102, 86–92 (1995)
162.
go back to reference G.K. Wehner, Velocities of sputtered atoms. Phys. Rev. 114, 1270–1272 (1959). K. Kopitzki, H.-E. Stier, Mittlere Geschwindigkeit der bei der Kathodenzerstäubung von Metallen ausgesandten Partikel. Z. Naturf. 17a, 346–352 (1962) G.K. Wehner, Velocities of sputtered atoms. Phys. Rev. 114, 1270–1272 (1959). K. Kopitzki, H.-E. Stier, Mittlere Geschwindigkeit der bei der Kathodenzerstäubung von Metallen ausgesandten Partikel. Z. Naturf. 17a, 346–352 (1962)
163.
go back to reference U. Littmark, P. Sigmund, Momentum deposition by heavy-ion bombardment and an application to sputtering. J. Phys. D Appl. Phys. 8, 241–245 (1975)CrossRef U. Littmark, P. Sigmund, Momentum deposition by heavy-ion bombardment and an application to sputtering. J. Phys. D Appl. Phys. 8, 241–245 (1975)CrossRef
164.
go back to reference M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari, J. Robertson, The ultrasmoothness of diamond-like surfaces. Science 309, 1545–1548 (2005)CrossRef M. Moseler, P. Gumbsch, C. Casiraghi, A.C. Ferrari, J. Robertson, The ultrasmoothness of diamond-like surfaces. Science 309, 1545–1548 (2005)CrossRef
165.
go back to reference M. Moseler, O. Rattunde, J. Nordiek, H. Haberland, On the origin of surface smoothing by energetic cluster impact: molecular dynamics simulation and mesoscopic modeling. Nucl. Instr. Meth. Phys. Res. B 164–165, 522–536 (2000)CrossRef M. Moseler, O. Rattunde, J. Nordiek, H. Haberland, On the origin of surface smoothing by energetic cluster impact: molecular dynamics simulation and mesoscopic modeling. Nucl. Instr. Meth. Phys. Res. B 164–165, 522–536 (2000)CrossRef
166.
go back to reference B. Davidovitch, M.J. Aziz, M.P. Brenner, Linear dynamics of ion sputtered surfaces: instability, stability and bifurcations. J. Phys. Condens. Matter 21, 224019 (2009) B. Davidovitch, M.J. Aziz, M.P. Brenner, Linear dynamics of ion sputtered surfaces: instability, stability and bifurcations. J. Phys. Condens. Matter 21, 224019 (2009)
167.
go back to reference M.P. Harrison, R.M. Bradley, Crater function approach to ion-induced nanoscale pattern formation: craters for flat surfaces are insufficient. Phys. Rev. B 89, 245401 (2014) M.P. Harrison, R.M. Bradley, Crater function approach to ion-induced nanoscale pattern formation: craters for flat surfaces are insufficient. Phys. Rev. B 89, 245401 (2014)
168.
go back to reference H. Hofsäss, K. Zhang, O. Bobes, Self-organized surface ripple pattern formation by ion implantation. Appl. Phys. 120, 135308 (2016) H. Hofsäss, K. Zhang, O. Bobes, Self-organized surface ripple pattern formation by ion implantation. Appl. Phys. 120, 135308 (2016)
169.
go back to reference G. Hobler, D. Maciążek, Z. Postawa, Crater function moments: role of implanted noble gas atoms. Phys. Rev. B 97, 155307 (2018) G. Hobler, D. Maciążek, Z. Postawa, Crater function moments: role of implanted noble gas atoms. Phys. Rev. B 97, 155307 (2018)
170.
go back to reference J.C. Perkinson, E. Anzenberg, M. J. Aziz, K.F Ludwig Jr, Model independent test of the truncated crater function theory of surface morphology evolution during ion bombardment. Phys. Rev. B 89, 115433 (2014) J.C. Perkinson, E. Anzenberg, M. J. Aziz, K.F Ludwig Jr, Model independent test of the truncated crater function theory of surface morphology evolution during ion bombardment. Phys. Rev. B 89, 115433 (2014)
171.
go back to reference M.P. Harrison, Modeling and controlling nanoscale patterns formed by bombardment with broad beam. Dissertation, Colorado State University (2017) M.P. Harrison, Modeling and controlling nanoscale patterns formed by bombardment with broad beam. Dissertation, Colorado State University (2017)
172.
go back to reference J.J. Elich, H.E. Roosendaal, H.H. Kersten, D. Onderdelinden, J. Kistenmaker, J.D. Elen, Relation between surface structures and sputtering ratios of copper single crystals. Rad. Eff. 8, 1–11 (1971). See also H.E. Roosendaal, Sputtering yields of single crystalline targets, in Sputtering by Particle Bombardment I, ed. by R. Behrisch, Topics in Applied Physics, vol. 47 (Springer, Berlin, Heidelberg, 1981), pp. 219–256 J.J. Elich, H.E. Roosendaal, H.H. Kersten, D. Onderdelinden, J. Kistenmaker, J.D. Elen, Relation between surface structures and sputtering ratios of copper single crystals. Rad. Eff. 8, 1–11 (1971). See also H.E. Roosendaal, Sputtering yields of single crystalline targets, in Sputtering by Particle Bombardment I, ed. by R. Behrisch, Topics in Applied Physics, vol. 47 (Springer, Berlin, Heidelberg, 1981), pp. 219–256
173.
go back to reference D. Ghose, Ion beam sputtering induced nanostructuring of polycrystalline metal films. J. Phys. Condens. Matter. 21, 224001 (2009) D. Ghose, Ion beam sputtering induced nanostructuring of polycrystalline metal films. J. Phys. Condens. Matter. 21, 224001 (2009)
174.
go back to reference K. Zhang, M. Uhrmacher, H. Hofsäss, J. Krauser, Magnetic texturing of ferromagnetic thin films by sputtering induced ripple formation Fe. J. Appl. Phys. 103, 83507 (2008)CrossRef K. Zhang, M. Uhrmacher, H. Hofsäss, J. Krauser, Magnetic texturing of ferromagnetic thin films by sputtering induced ripple formation Fe. J. Appl. Phys. 103, 83507 (2008)CrossRef
175.
go back to reference T. Skerén, K. Temst, W. Vandervorst, A. Vantomme, Ion-induced roughening and ripple formation on polycrystalline metallic films. New J. Phys. 15, 093047 (2013) T. Skerén, K. Temst, W. Vandervorst, A. Vantomme, Ion-induced roughening and ripple formation on polycrystalline metallic films. New J. Phys. 15, 093047 (2013)
176.
go back to reference P. Mishra, D. Ghose, The rotation of ripple pattern and the shape of the collision cascade in ion sputtered thin metal films. J. Appl. Phys. D 104, 94305 (2008)CrossRef P. Mishra, D. Ghose, The rotation of ripple pattern and the shape of the collision cascade in ion sputtered thin metal films. J. Appl. Phys. D 104, 94305 (2008)CrossRef
177.
go back to reference J.M. Colino, M.A. Arranz, Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films. Appl. Surf. Sci. 257, 4432–4438 (2011)CrossRef J.M. Colino, M.A. Arranz, Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films. Appl. Surf. Sci. 257, 4432–4438 (2011)CrossRef
178.
go back to reference H.X. Qian, W. Zhou, Self-organization of ripples on Ti irradiated with focused ion beam. Appl. Surf. Sci. 258, 1924–1928 (2012)CrossRef H.X. Qian, W. Zhou, Self-organization of ripples on Ti irradiated with focused ion beam. Appl. Surf. Sci. 258, 1924–1928 (2012)CrossRef
179.
go back to reference A. Toma , B.S. Batic, D. Chiappe, C. Boragno, U. Valbusa, N. Godec, M. Jenko, F.B. de Mongeot, et al., Patterning polycrystalline thin films by defocused ion beam: the influence of initial morphology on the evolution of self-organized nanostructures. J. Appl. Phys. 104, 104313 (2008) A. Toma , B.S. Batic, D. Chiappe, C. Boragno, U. Valbusa, N. Godec, M. Jenko, F.B. de Mongeot, et al., Patterning polycrystalline thin films by defocused ion beam: the influence of initial morphology on the evolution of self-organized nanostructures. J. Appl. Phys. 104, 104313 (2008)
180.
go back to reference P. Gailly, C. Petermann, P. Tihon, K. Fleury-Frenette, Ripple topography and roughness evolution on surface of polycrystalline gold and silver thin films under low energy Ar-ion beam sputtering. Appl. Surf. Lett. 258, 7717–7725 (2012)CrossRef P. Gailly, C. Petermann, P. Tihon, K. Fleury-Frenette, Ripple topography and roughness evolution on surface of polycrystalline gold and silver thin films under low energy Ar-ion beam sputtering. Appl. Surf. Lett. 258, 7717–7725 (2012)CrossRef
181.
go back to reference S. Rusponi, C. Boragno, U. Valbusa, Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78, 2795–2797 (1997)CrossRef S. Rusponi, C. Boragno, U. Valbusa, Ripple structure on Ag (110) surface induced by ion sputtering. Phys. Rev. Lett. 78, 2795–2797 (1997)CrossRef
182.
go back to reference M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, Real-time X-ray scattering study of surface morphology evolution during ion erosion and epitaxial growth of Au (111). Phys. Rev. B 60, 16956–16964 (1999)CrossRef M.V.R. Murty, T. Curcic, A. Judy, B.H. Cooper, A.R. Woll, J.D. Brock, S. Kycia, R.L. Headrick, Real-time X-ray scattering study of surface morphology evolution during ion erosion and epitaxial growth of Au (111). Phys. Rev. B 60, 16956–16964 (1999)CrossRef
183.
go back to reference H.X. Qian, W. Zhou, Y.Q. Fu, B.K.A. Ngoi, G.C. Lim, Crystallographically-dependent ripple formation on Sn surface irradiated with focused ion beam, Appl. Surf. Sci. 240, 140–145 (2005). H.X. Qian, W. Zhou, X.R. Zeng, Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn. J. Phys. D Appl. Phys. 43, 345302 (2010) H.X. Qian, W. Zhou, Y.Q. Fu, B.K.A. Ngoi, G.C. Lim, Crystallographically-dependent ripple formation on Sn surface irradiated with focused ion beam, Appl. Surf. Sci. 240, 140145 (2005). H.X. Qian, W. Zhou, X.R. Zeng, Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn. J. Phys. D Appl. Phys. 43, 345302 (2010)
184.
go back to reference N. Taniguchi, On the basic concept of nanotechnology, in Proceedings of the International Conference on Production Engineering (ICPE) (Tokyo, 1974), pp.18–23 N. Taniguchi, On the basic concept of nanotechnology, in Proceedings of the International Conference on Production Engineering (ICPE) (Tokyo, 1974), pp.18–23
185.
go back to reference F. Granone, V. Mussi, A. Toma, S. Orlanducci, M.L. Terranova, C. Boragno, F. Buatier de Mongeot, U. Valbusa, Ion sputtered surfaces as templates for carbon nanotubes alignment and deformation. Nucl. Instr. Meth. Phys. Res. B 230, 545–550 (2005)CrossRef F. Granone, V. Mussi, A. Toma, S. Orlanducci, M.L. Terranova, C. Boragno, F. Buatier de Mongeot, U. Valbusa, Ion sputtered surfaces as templates for carbon nanotubes alignment and deformation. Nucl. Instr. Meth. Phys. Res. B 230, 545–550 (2005)CrossRef
186.
go back to reference M. Kratzer, K. Szajna, D. Wrana, W. Belza, F. Krok, C. Teichert, Fabrication of ion bombardment induced rippled TiO2 surfaces to influence subsequent organic thin film growth, J. Phys.: Condens. Matter 30, 283001 (2018). M. Kratzer, D. Wrana, K. Szajna, F. Krok, C. Teichert, Island shape anisotropy in organic thin film growth induced by ion-beam irradiated rippled surfaces. Phys. Chem. Chem. Phys. 16, 26112–26118 (2014) M. Kratzer, K. Szajna, D. Wrana, W. Belza, F. Krok, C. Teichert, Fabrication of ion bombardment induced rippled TiO2 surfaces to influence subsequent organic thin film growth, J. Phys.: Condens. Matter 30, 283001 (2018). M. Kratzer, D. Wrana, K. Szajna, F. Krok, C. Teichert, Island shape anisotropy in organic thin film growth induced by ion-beam irradiated rippled surfaces. Phys. Chem. Chem. Phys. 16, 26112–26118 (2014)
187.
go back to reference C. Teichert, J.J. Miguel, T. Bobek, Ion beam sputtered nanostructured semiconductor surfaces as templates for nanomagnet arrays. J. Phys. Condens. Matter 21, 224025 (2009) C. Teichert, J.J. Miguel, T. Bobek, Ion beam sputtered nanostructured semiconductor surfaces as templates for nanomagnet arrays. J. Phys. Condens. Matter 21, 224025 (2009)
188.
go back to reference E. Mele, F. Di Benedetto, R. Cingolani, D. Pisignano, A. Toma, F.B. de Mongeot, R. Buzio, C. Boragno, G. Firpo, V. Mussi, U. Valbusa, Nanostructuring polymers by soft lithography templates realized via ion sputtering. Nanotechnology 16, 2714–2717 (2005)CrossRef E. Mele, F. Di Benedetto, R. Cingolani, D. Pisignano, A. Toma, F.B. de Mongeot, R. Buzio, C. Boragno, G. Firpo, V. Mussi, U. Valbusa, Nanostructuring polymers by soft lithography templates realized via ion sputtering. Nanotechnology 16, 2714–2717 (2005)CrossRef
189.
go back to reference Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef
190.
go back to reference T. Bobek, H. Kurz, Fabrication of metallic nanomasks by transfer of self-organized nanodot patterns from semiconductor material into thin metallic layers. Nucl. Instr. Meth. Phys. Res. B 257, 771–776 (2007)CrossRef T. Bobek, H. Kurz, Fabrication of metallic nanomasks by transfer of self-organized nanodot patterns from semiconductor material into thin metallic layers. Nucl. Instr. Meth. Phys. Res. B 257, 771–776 (2007)CrossRef
191.
go back to reference T. Bobek, N. Mikuszeit, J. Camarero, S. Kyrsta, L. Yang, M.A. Nino, C. Hofer, L. Gridneva, D. Arvanitis, R. Miranda, J.J. de Miguel, C. Teichert, H. Kurz, Self-organized hexagonal patterns of independent magnetic nanodots. Adv. Mat. 19, 4375–4380 (2007)CrossRef T. Bobek, N. Mikuszeit, J. Camarero, S. Kyrsta, L. Yang, M.A. Nino, C. Hofer, L. Gridneva, D. Arvanitis, R. Miranda, J.J. de Miguel, C. Teichert, H. Kurz, Self-organized hexagonal patterns of independent magnetic nanodots. Adv. Mat. 19, 4375–4380 (2007)CrossRef
192.
go back to reference X. Ou, R. Kögler, X. Wei, A. Mücklich, X. Wang, W. Skorupa, S. Facsko, Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 1, 042174 (2011) X. Ou, R. Kögler, X. Wei, A. Mücklich, X. Wang, W. Skorupa, S. Facsko, Fabrication of horizontal silicon nanowire arrays on insulator by ion irradiation. AIP Adv. 1, 042174 (2011)
193.
go back to reference V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov, Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure. Nanotechnology 14, 709–715 (2003). V.K. Smirnov, D.S. Kibalov, Methods of formation of a silicon nanostructure, a silicon quantum wire array and devices based thereon. US Patent 6,274,007 (2001) V.K. Smirnov, D.S. Kibalov, O.M. Orlov, V.V. Graboshnikov, Technology for nanoperiodic doping of a metal-oxide-semiconductor field-effect transistor channel using a self-forming wave-ordered structure. Nanotechnology 14, 709–715 (2003). V.K. Smirnov, D.S. Kibalov, Methods of formation of a silicon nanostructure, a silicon quantum wire array and devices based thereon. US Patent 6,274,007 (2001)
194.
go back to reference L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, J.F. McGilp, The linear and nonlinear optical response of native-oxide covered rippled Si templates with nanoscale periodicity. Phys. Stat. Sol. (b) 249, 1173–1177 (2012) L. Persechini, M. Ranjan, F. Grossmann, S. Facsko, J.F. McGilp, The linear and nonlinear optical response of native-oxide covered rippled Si templates with nanoscale periodicity. Phys. Stat. Sol. (b) 249, 1173–1177 (2012)
195.
go back to reference V. Mussi, F. Granone, C. Boragno, F. Buatier de Mongeot, U. Valbusa, V. Dodecaneso, T. Marolo, R.M. Montereali, Surface nanostructuring and optical activation of lithium fluoride crystals by ion beam irradiation. Appl. Phys. Lett. 88, 103116 (2006) V. Mussi, F. Granone, C. Boragno, F. Buatier de Mongeot, U. Valbusa, V. Dodecaneso, T. Marolo, R.M. Montereali, Surface nanostructuring and optical activation of lithium fluoride crystals by ion beam irradiation. Appl. Phys. Lett. 88, 103116 (2006)
196.
go back to reference V. Mussi, R.M. Montereali, E. Nichelatti, C. Boragno, F. Buatier de Mongeot, U. Valbusa, Broad band light-emitting nanostructured substrates by ion beam irradiation of lithium fluoride crystals. Surf. Sci. 601, 2746–2749 (2007)CrossRef V. Mussi, R.M. Montereali, E. Nichelatti, C. Boragno, F. Buatier de Mongeot, U. Valbusa, Broad band light-emitting nanostructured substrates by ion beam irradiation of lithium fluoride crystals. Surf. Sci. 601, 2746–2749 (2007)CrossRef
197.
go back to reference C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, Self-organized broadband light trapping in thin film amorphous silicon solar cells. Nanotechnology 24, 225201 (2013) C. Martella, D. Chiappe, P. Delli Veneri, L.V. Mercaldo, I. Usatii, F. Buatier de Mongeot, Self-organized broadband light trapping in thin film amorphous silicon solar cells. Nanotechnology 24, 225201 (2013)
198.
go back to reference U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)CrossRef U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)CrossRef
199.
go back to reference A. Toma, D. Chiappe, D. Massabò, C. Boragno, F.B. de Mongeot, Self-organized metal nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 93, 163104 (2008) A. Toma, D. Chiappe, D. Massabò, C. Boragno, F.B. de Mongeot, Self-organized metal nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 93, 163104 (2008)
200.
go back to reference T.W.H. Oates, A. Keller, S. Noda, S. Facsko, Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl. Phys. Lett. 93, 063106 (2008) T.W.H. Oates, A. Keller, S. Noda, S. Facsko, Self-organized metallic nanoparticle and nanowire arrays from ion-sputtered silicon templates. Appl. Phys. Lett. 93, 063106 (2008)
201.
go back to reference S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, F. Pailloux, Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Phys. Rev. B. 80, 155434 (2009) S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, F. Pailloux, Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion. Phys. Rev. B. 80, 155434 (2009)
202.
go back to reference M. Ranjan, M. Bhatnagar, S. Mukherjee, Localized surface plasmon resonance anisotropy in template aligned silver nanoparticles: a case of biaxial metal optics, J. Appl. Phys. 117, 103106 (2015) M. Ranjan, M. Bhatnagar, S. Mukherjee, Localized surface plasmon resonance anisotropy in template aligned silver nanoparticles: a case of biaxial metal optics, J. Appl. Phys. 117, 103106 (2015)
203.
go back to reference T.W.H. Oates, A. Keller, S. Facsko, A. Mücklich, Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics 2, 47–50 (2007)CrossRef T.W.H. Oates, A. Keller, S. Facsko, A. Mücklich, Aligned silver nanoparticles on rippled silicon templates exhibiting anisotropic plasmon absorption. Plasmonics 2, 47–50 (2007)CrossRef
204.
go back to reference M. Bhatnagar, M. Ranjan, K. Jolley, A. Lloyd, R. Smith, S. Mukherjee, Thermal dynamics of silver clusters grown on rippled silica surface. Nucl. Instr. Meth. Phys. Res. B 393, 5–12 (2017)CrossRef M. Bhatnagar, M. Ranjan, K. Jolley, A. Lloyd, R. Smith, S. Mukherjee, Thermal dynamics of silver clusters grown on rippled silica surface. Nucl. Instr. Meth. Phys. Res. B 393, 5–12 (2017)CrossRef
205.
go back to reference M. Ranjan, S. Facsko, Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays. Nanotechnology 23, 485307 (2012) M. Ranjan, S. Facsko, Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays. Nanotechnology 23, 485307 (2012)
206.
go back to reference M. Ranjan, S. Facsko, M. Fritzsche, S. Mukherjee, Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates. Microelectr. Eng. 102, 44–47 (2013)CrossRef M. Ranjan, S. Facsko, M. Fritzsche, S. Mukherjee, Plasmon resonance tuning in Ag nanoparticles arrays grown on ripple patterned templates. Microelectr. Eng. 102, 44–47 (2013)CrossRef
207.
go back to reference S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 3579–3587 (2014)CrossRef S.K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, I. Abdulhalim, SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin. Small 10, 3579–3587 (2014)CrossRef
208.
go back to reference B. Schreiber, D. Gkogkou, L. Dedelaite, J. Kerbusch, R. Hübner, E. Sheremet, D.R.T. Zahn, A. Ramanavicius, S. Facsko, R.D. Rodriguez, Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS. RSC Adv. 8, 22569–22576 (2018)CrossRef B. Schreiber, D. Gkogkou, L. Dedelaite, J. Kerbusch, R. Hübner, E. Sheremet, D.R.T. Zahn, A. Ramanavicius, S. Facsko, R.D. Rodriguez, Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS. RSC Adv. 8, 22569–22576 (2018)CrossRef
209.
go back to reference Y.J. Chen, J.P. Wang, E.W. Soo, L. Wu, T.C. Chong, Periodic magnetic nanostructures on self- assembled surfaces by ion beam bombardment. Appl. Phys. Lett. 91, 7323–7325 (2002) Y.J. Chen, J.P. Wang, E.W. Soo, L. Wu, T.C. Chong, Periodic magnetic nanostructures on self- assembled surfaces by ion beam bombardment. Appl. Phys. Lett. 91, 7323–7325 (2002)
210.
go back to reference F. Bisio, R. Moroni, F. Buatier de Mongeot, M. Canepa, L. Mattera, Isolating the step contribution to the uniaxial magnetic anisotropy in nanostructured Fe/Ag(001) films. Phys. Rev. Lett. 96, 057204 (2006) F. Bisio, R. Moroni, F. Buatier de Mongeot, M. Canepa, L. Mattera, Isolating the step contribution to the uniaxial magnetic anisotropy in nanostructured Fe/Ag(001) films. Phys. Rev. Lett. 96, 057204 (2006)
211.
go back to reference U. Gradmann, Ferromagnetism near surfaces and in thin films. Appl. Phys. A 3, 161–178 (1974). Magnetism of surfaces and interfaces. J. Magn. Mag. Mater. 6, 173–182 (1977) U. Gradmann, Ferromagnetism near surfaces and in thin films. Appl. Phys. A 3, 161178 (1974). Magnetism of surfaces and interfaces. J. Magn. Mag. Mater. 6, 173–182 (1977)
212.
go back to reference K.V. Sarathlal, D. Kumar, A. Gupta, Growth study of Co thin film on nanorippled Si(100) substrate. Appl. Phys. Lett. 98, 123111 (2011) K.V. Sarathlal, D. Kumar, A. Gupta, Growth study of Co thin film on nanorippled Si(100) substrate. Appl. Phys. Lett. 98, 123111 (2011)
213.
go back to reference M.O. Liedke, M. Korner, K. Lenz, M. Fritzsche, M. Ranjan, A. Keller, E. Čižmár, S. A. Zvyagin, S. Facsko, K. Potzger, J. Lindner, J. Fassbender, Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces. Phys. Rev. B 87, 024424 (2013) M.O. Liedke, M. Korner, K. Lenz, M. Fritzsche, M. Ranjan, A. Keller, E. Čižmár, S. A. Zvyagin, S. Facsko, K. Potzger, J. Lindner, J. Fassbender, Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces. Phys. Rev. B 87, 024424 (2013)
214.
go back to reference J. Fassbender, T. Strache, M.O. Liedke, D. Markó, S. Wintz, K Lenz, A. Keller, S. Facsko, I. Mönch, J. McCord, Introducing artificial length scales to tailor magnetic properties. New J. Phys. 11, 125002 (2009) J. Fassbender, T. Strache, M.O. Liedke, D. Markó, S. Wintz, K Lenz, A. Keller, S. Facsko, I. Mönch, J. McCord, Introducing artificial length scales to tailor magnetic properties. New J. Phys. 11, 125002 (2009)
215.
go back to reference M. Körner, K. Lenz, M.O. Liedke, T. Strache, A. Mücklich, A. Keller, S. Facsko, J. Fassbender, Interlayer exchange coupling of Fe/Cr/Fe thin films on rippled substrates. Phys. Rev. B 80, 214401 (2009) M. Körner, K. Lenz, M.O. Liedke, T. Strache, A. Mücklich, A. Keller, S. Facsko, J. Fassbender, Interlayer exchange coupling of Fe/Cr/Fe thin films on rippled substrates. Phys. Rev. B 80, 214401 (2009)
216.
go back to reference P.-G. De Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)CrossRef P.-G. De Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985)CrossRef
217.
go back to reference A. Metya, D. Ghose, N.R. Ray, Development of hydrophobicity of mica surfaces by ion beam sputtering. Appl. Surf. Sci. 293, 18–23 (2014)CrossRef A. Metya, D. Ghose, N.R. Ray, Development of hydrophobicity of mica surfaces by ion beam sputtering. Appl. Surf. Sci. 293, 18–23 (2014)CrossRef
218.
go back to reference T. Kumar, U.B. Singh, M. Kumar, S. Ojha, D. Kanjilal, Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation. Curr. Appl. Phys. 14, 312–317 (2014)CrossRef T. Kumar, U.B. Singh, M. Kumar, S. Ojha, D. Kanjilal, Tuning of ripple patterns and wetting dynamics of Si (100) surface using ion beam irradiation. Curr. Appl. Phys. 14, 312–317 (2014)CrossRef
219.
go back to reference S.K. Garg, D.P. Datta, J. Ghatak, I. Thakur, K. Khare, D. Kanjilal, T. Som, Tunable wettability of Si through surface energy engineering by nanopatterning. RSC Adv. 6, 48550–48557 (2016)CrossRef S.K. Garg, D.P. Datta, J. Ghatak, I. Thakur, K. Khare, D. Kanjilal, T. Som, Tunable wettability of Si through surface energy engineering by nanopatterning. RSC Adv. 6, 48550–48557 (2016)CrossRef
220.
go back to reference J. Petersen, S.G. Mayr, Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates. J. Appl. Phys. 103, 023520 (2008) J. Petersen, S.G. Mayr, Dewetting of Ni and NiAg solid thin films and formation of nanowires on ripple patterned substrates. J. Appl. Phys. 103, 023520 (2008)
Metadata
Title
Low-Energy Ion Beam Bombardment-Induced Nanostructures
Author
Bernd Rauschenbach
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-97277-6_8

Premium Partners