Skip to main content
Top
Published in: Strength of Materials 2/2021

10-07-2021

Low-Temperature Crack Resistance of Cryogenic Structures

Authors: N. A. Makhutov, I. V. Makarenko, L. V. Makarenko

Published in: Strength of Materials | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The versions of nonlinear defining relations and characteristics of nonlinear fracture mechanics controlling and simulating the service life, survivability, and durability of parts of modern power and energy structures operating at low, cryogenic temperatures are investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. A. Makhutov, Structural Strength, Life and Technogenic Safety [in Russian], Nauka, Novosibirsk (2005). N. A. Makhutov, Structural Strength, Life and Technogenic Safety [in Russian], Nauka, Novosibirsk (2005).
2.
go back to reference A. E. Andreikiv, Spatial Problems of Crack Theory [in Russian], Naukova Dumka, Kiev (1982). A. E. Andreikiv, Spatial Problems of Crack Theory [in Russian], Naukova Dumka, Kiev (1982).
3.
go back to reference N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966). N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).
4.
go back to reference G. P. Cherepanov, “Plastic fracture lines at the crack tip,” Appl. Math. Mech., 40, No. 4, 720–728 (1976). G. P. Cherepanov, “Plastic fracture lines at the crack tip,” Appl. Math. Mech., 40, No. 4, 720–728 (1976).
5.
go back to reference N. A. Makhutov and I. V. Makarenko, “Growth of inclined surface cracks in low-cycle fatigue,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 68–72 (1986). N. A. Makhutov and I. V. Makarenko, “Growth of inclined surface cracks in low-cycle fatigue,” Fiz.-Khim. Mekh. Mater., 22, No. 1, 68–72 (1986).
7.
go back to reference N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “A study of fracture kinetics in welded components of nuclear power plant equipment in the presence of surface semi-elliptical variously oriented cracks,” Strength Mater., 42, No. 1, 25–31 (2010), 10.1007/s11223-010-9183-7. N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “A study of fracture kinetics in welded components of nuclear power plant equipment in the presence of surface semi-elliptical variously oriented cracks,” Strength Mater., 42, No. 1, 25–31 (2010), 10.1007/s11223-010-9183-7.
8.
go back to reference ANSYS. Structural Analysis Guide 660578 (2010). ANSYS. Structural Analysis Guide 660578 (2010).
9.
go back to reference N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “Calculation and experimental analysis of the stress-strain state for inclined half-penny surface cracks,” Inorg. Mater., 53, No. 15, 1502–1505 (2017).CrossRef N. A. Makhutov, I. V. Makarenko, and L. V. Makarenko, “Calculation and experimental analysis of the stress-strain state for inclined half-penny surface cracks,” Inorg. Mater., 53, No. 15, 1502–1505 (2017).CrossRef
10.
go back to reference C. Q. Li, G. Y. Fu, and W. Yang, “Stress intensity factors for inclined external surface cracks in pressurized pipes,” Eng. Fract. Mech., 165, 72–86 (2016).CrossRef C. Q. Li, G. Y. Fu, and W. Yang, “Stress intensity factors for inclined external surface cracks in pressurized pipes,” Eng. Fract. Mech., 165, 72–86 (2016).CrossRef
11.
go back to reference L. W. Carey, “The effect of low temperatures on the fatigue of high-strength structural grade steels,” Proc. Mat. Sci., 3, 209–214 (2014). L. W. Carey, “The effect of low temperatures on the fatigue of high-strength structural grade steels,” Proc. Mat. Sci., 3, 209–214 (2014).
12.
go back to reference C. F. Shih and R. J. Asaro, “Elastoplastic analysis of cracks on biomaterial interfaces: Part I – Small scale yielding,” J. Appl. Mech.-T ASME, 55, 299–316 (1988).CrossRef C. F. Shih and R. J. Asaro, “Elastoplastic analysis of cracks on biomaterial interfaces: Part I – Small scale yielding,” J. Appl. Mech.-T ASME, 55, 299–316 (1988).CrossRef
13.
go back to reference J. Predan, V. Moèilnik, and N. Gubeljak, “Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion,” Eng. Fract. Mech., 105, 152–168 (2013).CrossRef J. Predan, V. Moèilnik, and N. Gubeljak, “Stress intensity factors for circumferential semi-elliptical surface cracks in a hollow cylinder subjected to pure torsion,” Eng. Fract. Mech., 105, 152–168 (2013).CrossRef
14.
go back to reference A. Evans, A. Clarke, R. Gravina, et al., “Improved stress intensity factors for selected configurations in cracked plates,” Eng. Fract. Mech., 127, 296–312 (2014).CrossRef A. Evans, A. Clarke, R. Gravina, et al., “Improved stress intensity factors for selected configurations in cracked plates,” Eng. Fract. Mech., 127, 296–312 (2014).CrossRef
15.
go back to reference S. Yang, Y. L. Ni, and C. Q. Li, “Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels,” Eng. Fract. Mech., 109, 138–149 (2013).CrossRef S. Yang, Y. L. Ni, and C. Q. Li, “Weight function method to determine stress intensity factor for semi-elliptical crack with high aspect ratio in cylindrical vessels,” Eng. Fract. Mech., 109, 138–149 (2013).CrossRef
16.
go back to reference D. Yi, S. Idapalapati, Z. M. Xiao, and S. B. Kumar, “Fracture capacity of girth welded pipelines with 3D surface cracks subjected to biaxial loading conditions,” Int. J. Pres. Ves. Pip., 92, 115–126 (2012).CrossRef D. Yi, S. Idapalapati, Z. M. Xiao, and S. B. Kumar, “Fracture capacity of girth welded pipelines with 3D surface cracks subjected to biaxial loading conditions,” Int. J. Pres. Ves. Pip., 92, 115–126 (2012).CrossRef
17.
go back to reference D. Yi, Z. M. Xiao, S. Idapalapati, and S. B. Kumar, “Fracture analysis of girth welded pipelines with 3D embedded cracks subjected to biaxial loading conditions,” Eng. Fract. Mech., 96, 570–587 (2012).CrossRef D. Yi, Z. M. Xiao, S. Idapalapati, and S. B. Kumar, “Fracture analysis of girth welded pipelines with 3D embedded cracks subjected to biaxial loading conditions,” Eng. Fract. Mech., 96, 570–587 (2012).CrossRef
18.
go back to reference C. F. Shih, “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks,” J. Mech. Phys. Solids, 29, 305–326 (1981).CrossRef C. F. Shih, “Relationship between the J-integral and the crack opening displacement for stationary and extending cracks,” J. Mech. Phys. Solids, 29, 305–326 (1981).CrossRef
19.
go back to reference J. C. Newman and I. S. Raju, “An empirical stress-intensity factor equation for the surface crack,” Eng. Fract. Mech., 15, Nos. 1–2, 185–192 (1981). J. C. Newman and I. S. Raju, “An empirical stress-intensity factor equation for the surface crack,” Eng. Fract. Mech., 15, Nos. 1–2, 185–192 (1981).
20.
go back to reference R. Akbari Alashti, S. Jafari, and S. J. Hosseinipour, “Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure,” Eng. Fail. Anal., 47, Part A, 208–228 (2015). R. Akbari Alashti, S. Jafari, and S. J. Hosseinipour, “Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure,” Eng. Fail. Anal., 47, Part A, 208–228 (2015).
21.
go back to reference G. Y. Fu, W. Yang, and C. Q. Li, “Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending,” Theor. Appl. Fract. Mec., 89, 100–109 (2017).CrossRef G. Y. Fu, W. Yang, and C. Q. Li, “Stress intensity factors for mixed mode fracture induced by inclined cracks in pipes under axial tension and bending,” Theor. Appl. Fract. Mec., 89, 100–109 (2017).CrossRef
Metadata
Title
Low-Temperature Crack Resistance of Cryogenic Structures
Authors
N. A. Makhutov
I. V. Makarenko
L. V. Makarenko
Publication date
10-07-2021
Publisher
Springer US
Published in
Strength of Materials / Issue 2/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00291-1

Other articles of this Issue 2/2021

Strength of Materials 2/2021 Go to the issue

Premium Partners