Skip to main content
Top

2024 | OriginalPaper | Chapter

Lower Bounds for High Derivatives of Smooth Functions With Given Zeros

Authors : Gil Goldman, Yosef Yomdin

Published in: Differential Geometric Structures and Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(f: B^n \rightarrow {\mathbb R}\) be a \(d+1\) times continuously differentiable function on the unit ball \(B^n\), with \(\max _{z\in B^n} |f(z)|=1\). A well-known fact is that if f vanishes on a set \(Z\subset B^n\) with a non-empty interior, then for each \(k=1,\ldots ,d+1\) the norm of the k-th derivative \(\Vert f^{(k)}\Vert \) is at least \(M=M(n,k)>0\). A natural question to ask is: what happens for other sets Z? In particular, for finite, but sufficiently dense sets? This question was partially answered in [16] and [2022]. This study is naturally related to a certain special settings of the Whitney’s smooth extension problem. Our goal in this paper is threefold: first, to provide an overview of the relevant questions and existing results in the general Whitney’s problem. Second, we provide an overview of our specific setting and some available results. Third, we provide some new results in our direction, which extend the recent result of [21], where an answer to the above question is given via the topological information on Z.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Brudnyi, Y. and Ganzburg, M.: On an extremal problem for polynomials of \(n\)-variables. Math. USSR Izv. 37, 344–356 (1973)MathSciNet Brudnyi, Y. and Ganzburg, M.: On an extremal problem for polynomials of \(n\)-variables. Math. USSR Izv. 37, 344–356 (1973)MathSciNet
2.
3.
go back to reference Brudnyi, A. Yomdin, Y.: Norming sets, and related Remez-type inequalities, J. Aust. Math. Soc. 100 (2016) 163–181MathSciNetCrossRef Brudnyi, A. Yomdin, Y.: Norming sets, and related Remez-type inequalities, J. Aust. Math. Soc. 100 (2016) 163–181MathSciNetCrossRef
7.
go back to reference Fefferman, C. and Klartag, B.: Fitting a \(C^m\)-smooth function to data. Part I, Ann. Math. (2) 169 (2009), 315-346. Part II, Rev. Mat. Iberoam. 25 (2009), 49–273 Fefferman, C. and Klartag, B.: Fitting a \(C^m\)-smooth function to data. Part I, Ann. Math. (2) 169 (2009), 315-346. Part II, Rev. Mat. Iberoam. 25 (2009), 49–273
8.
go back to reference Kolmogorov, A.N. and Tikhomirov, V.M.: \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in functional spaces, Usp. Math. Nauk, 14 (1959), 3–86 Kolmogorov, A.N. and Tikhomirov, V.M.: \(\varepsilon \)-entropy and \(\varepsilon \)-capacity of sets in functional spaces, Usp. Math. Nauk, 14 (1959), 3–86
10.
go back to reference Remez, E.J.: Sur une propriete des polynomes de Tchebycheff, Comm. Inst. Sci. Kharkov, ‘13 (1936) 93–95 Remez, E.J.: Sur une propriete des polynomes de Tchebycheff, Comm. Inst. Sci. Kharkov, ‘13 (1936) 93–95
11.
go back to reference Whitney, H.: Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Vol. 36 (1934), 63–89MathSciNetCrossRef Whitney, H.: Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., Vol. 36 (1934), 63–89MathSciNetCrossRef
12.
go back to reference Whitney, H.: Differentiable Functions Defined in Closed Sets. I, Trans. Amer. Math. Soc., Vol. 36, No. 2 (1934), 369–387 Whitney, H.: Differentiable Functions Defined in Closed Sets. I, Trans. Amer. Math. Soc., Vol. 36, No. 2 (1934), 369–387
14.
go back to reference Wiener, Z. and Yomdin, Y.: Numerical From Formal Numerical Solutions of Elliptic PDE’s to the True Ones, Mathematics of Computation, Vol. 69, No. 229 (Jan., 2000), 197–235 Wiener, Z. and Yomdin, Y.: Numerical From Formal Numerical Solutions of Elliptic PDE’s to the True Ones, Mathematics of Computation, Vol. 69, No. 229 (Jan., 2000), 197–235
15.
go back to reference Yomdin, Y.: The Geometry of Critical and Near-Critical Values of Differentiable Mappings. Mathematische Annalen, 264, (1983) 495–516MathSciNetCrossRef Yomdin, Y.: The Geometry of Critical and Near-Critical Values of Differentiable Mappings. Mathematische Annalen, 264, (1983) 495–516MathSciNetCrossRef
16.
go back to reference Yomdin, Y.: The set of zeroes of an “almost polynomial” function, Proc. AMS, Vol. 90, No. 4 (1984), 538–542MathSciNet Yomdin, Y.: The set of zeroes of an “almost polynomial” function, Proc. AMS, Vol. 90, No. 4 (1984), 538–542MathSciNet
17.
go back to reference Yomdin, Y.: Global bounds for the Betti numbers of regular fibers of differentiable mappings. Topology 24 (1985), no. 2, 145–152MathSciNetCrossRef Yomdin, Y.: Global bounds for the Betti numbers of regular fibers of differentiable mappings. Topology 24 (1985), no. 2, 145–152MathSciNetCrossRef
21.
go back to reference Yomdin, Y.: Smooth rigidity and Remez inequalities via Topology of level sets, Journal of Singularities, Vol. 25 (2022), 443–455MathSciNetCrossRef Yomdin, Y.: Smooth rigidity and Remez inequalities via Topology of level sets, Journal of Singularities, Vol. 25 (2022), 443–455MathSciNetCrossRef
23.
go back to reference Yomdin, Y. and Comte, G.: Tame geometry with application in smooth analysis, Springer, LNM 1843, 2004 Yomdin, Y. and Comte, G.: Tame geometry with application in smooth analysis, Springer, LNM 1843, 2004
Metadata
Title
Lower Bounds for High Derivatives of Smooth Functions With Given Zeros
Authors
Gil Goldman
Yosef Yomdin
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50586-7_14

Premium Partner